

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah

Pavendeep Kaur Hayre

23

CMP2515 Software Design UG2 – Team Project
Team 23

1

Table of Contents
Part I .. 2

Introduction .. 2

Existing System ... 2

Recognised Weaknesses ... 3

Requirements .. 3

Functional Requirements .. 4

Non-Functional Requirements .. 4

Goals ... 4

Essential Use Cases ... 5

Use Case Diagram ... 11

Conceptual Class Diagram ... 12

Part II ... 15

System Sequence Diagrams .. 15

Contracts ... 20

Part III .. 26

Collaboration Diagrams .. 26

Patterns ... 28

Class Diagram .. 29

Appendix ... 30

Project Diary .. 30

Glossary ... 31

CMP2515 Software Design UG2 – Team Project
Team 23

2

Part I

Introduction

This document contains the software design development for Bvis Car Hire Company (BCHC) who
would like to replace their current paper-based system with a new computerised system which
carries out the same functions as the existing system. Currently, BCHC provides their service of hiring
a vehicle, having it serviced when necessary and having it returned and recorded in a diary.
Therefore, this means creating duplicate records if the same car has been hired more than once and
if the same customer returns. Due to this, BCHC require a computerized system that allows them to
keep track of which vehicles have been hired and which are still within the fleet, when a vehicle
needs to be serviced and also to have the customer details stored on the system making it easier for
when they return to hire a new vehicle. By allowing this, it will reduce time for the staff when
making a transaction as well as having to look up details about a certain registered customer or
vehicle. A new system would also help when the management need to lookup details about a certain
mechanic and to ensure that they all hold valid driving licences.

Existing System

BCHC currently works with a manual paper-based system for its hire transactions, vehicle records,
customer records, mechanic records and the vehicle service records. It works as follows:

 BCHC keeps a file of all of its customers. The following customer information is required:
o Name
o Telephone number
o Address
o Driving licence number

 Each vehicle’s details are recorded and kept; some of these details will be continuously
updated such as service dates. The details recorded are:

o Registration number (unique identifier)
o Make
o Mode
o Engine capacity
o Hire class (1-6)
o Date of registration
o Date of each service
o Name of mechanic responsible for each service
o Mileage (updated on return after hire)

 The vehicles have a minor service every 6,000 miles and a major service every 12,000 miles
and are serviced at the first available opportunity. The company’s mechanics are responsible
for the servicing.

 When a vehicle is hired, the customer details are recorded on the hire form along with the
vehicle details, and the dates of the hire period (beginning and end). The end date is usually
an estimate and will be updated on the return of the vehicle if it does not match what was
originally recorded. The mileage at the start of the hire period is also recorded.

CMP2515 Software Design UG2 – Team Project
Team 23

3

 When a vehicle is returned, the eventual return date is recorded on the hire form (if it differs
to the original return date); the mileage on return of the vehicle is also recorded. Using the
daily hire rate (defined in the hire class of each vehicle) and length of hire period, the cost of
hire is calculated and the customer is billed. Only cash payment it accepted, the customer is
given a receipt.

 The management requires that every completed hire transaction must contain the details of
the customer, the dates of the hire period, details of the vehicle and the cost of hire.

 There is a record kept for each hire class of vehicles which are the daily, weekly and monthly
hire rates. These are defined by the hire class.

 The garage keeps a record of each mechanic; it is a requirement that all mechanics hold a
current driving licence. The following details are kept:

o Name
o Address
o Telephone number
o Driving licence number

Recognised Weaknesses

In the age of technology this system can be classed as archaic and outdated. The main issue
identified is the fact that the records are entirely paper based. A paper based system can render
record-keeping inefficient, one of the causes is that physical documents will need storage space and
as more records are accrued the more space will be required. It can also be a slow and arduous
process in locating certain files especially if the filing system has not been maintained well as
documents can easily be lost. The physical nature of the system hampers productivity.

Physical files are also prone to many forms of damage and are not backed up as easily as a digital file
would be, the backup process would be very time consuming. The transportation of documents can
also be seen as a weakness as sending physical copies is much slower than sending through email,
physically mailing files can take days compared to seconds when electronically mailing them.

A major flaw regarding the paper based system and the nature of the company is the editing of
documents. Since the company require details of various items to be constantly updated (e.g.
mileage, hire dates, service dates) it is very inefficient to do this on paper compared the relative ease
of which this can be achieved electronically. Updating paper based records also means an increase in
the amount of paper which goes on to add to the issue of diminishing storage space.

Another concern with paper based filing is security, digital files can be protected with very advanced
password and encryption services whereas physical copies of files are basically protected by a door
which can be broken. A further concern is the cost of materials as the company will have to purchase
a lot of paper; this could be in various sizes and styles of paper (e.g. thickness, colour). Paper will
need to be purchased frequently; this is also compounded by printer costs as more ink is used in
such a system.

Requirements

A solution to a problem of this nature would need to be developed using Object-Oriented (OO)
programming. An object is a tangible entity based on a real world equivalent; there are multiple
items in the system that can be identified as objects, such as Vehicles and People. These objects will

CMP2515 Software Design UG2 – Team Project
Team 23

4

have variable data states as attributes and properties will differ based on each instance of the object,
they can share this data with other objects or functions to enable the system to cohesively interact
in order to provide services.

Functional Requirements

BCHC would like the following functions implemented in the new computerised system:

 Register a new customer

 Record that a particular car has been hired

 Record that a particular car has been returned

 Calculate the cost of hire based on the daily hire rate

 Display the appropriate details and print out a receipt

 Log a completed hire

 Record a service for a particular car, together with the date of the service, the type of
service, and the name of the mechanic responsible

 Remove a customer

 Add a vehicle to the fleet

 Delete a car that is no longer in the hire fleet

 Add a mechanic who has joined the company

 Remove the details of a mechanic who has left the company

 Determine if a particular car is due for a particular service

 List the information (history) about all hires for a specified car

 List the information (history) about all services that a specified car has had

Non-Functional Requirements

Usability:

 A help and support menu is provided when needed

Security:

 Keep data confidential

 Provide more security with the system e.g. username and passwords

Performance:

 The system has a response of no more than 15 seconds when user inputs data

 System should provide a response in more than 60 seconds whether it is a high or low
complicated task

Availability:

 View/search data when requested

 System available 24/7

Goals

Based on the requirements, the goals of the system are to:

 Provide a paperless hire system

 Speed up the hire process

 Reduce office costs

 Increase administrative efficiency

CMP2515 Software Design UG2 – Team Project
Team 23

5

 Automatically book vehicles for service if needed

 Allow a more dynamic management of records such as vehicles, customers and personnel.

Essential Use Cases

The following use cases were compiled based on the requirements.

Use Case UC01 – Log in

Actor(s) All staff

Purpose Log into system

Overview The staff members are required to log into the system, each type of staff
member has different privileges so it is essential they have different accounts.
Clerks cannot carry out functions such as adding/removing vehicles from the
fleet. Each staff member will be given a unique username and password.

Precondition None

Actor action System response

1. The staff member would like to use the
system.

2. System prompts the staff member for
their username and password.

3. The staff member enters their
username and password and clicks ‘Log
in’ or hits the ‘Enter’ button on the
keyboard.

4. The system verifies whether the details
are correct.

 5. Upon verification, the system logs into
the user’s account with their relevant
privileges.

Table 1 – Log in

Use Case UC02 – Register Customer

Actor(s) Customer (initiator), Clerk

Purpose Register customer details

Overview A customer would like to hire a vehicle; if not already registered; Staff acquires
relevant details (Name, Telephone Number, and Address) from the Customer
and inputs them into the system database.

Precondition UC01

Actor action System response

1. Customer would like to register with
the interest to hire a vehicle.

2. Clerk initiates registration process (e.g.
opening relevant program/database)

3. The system presents fields to enter
Customer information

4. The Clerk acquires Customer
information (Name, Telephone
Number, and Address).

5. Clerk enters and submits the data. 6. The system verifies the data types,
upon verification data is saved.

 7. Customer is registered.

Table 2 – Register customer

Use Case UC03 – Hire out a vehicle

Actor(s) Customer (initiator), Clerk

Purpose Hire out a vehicle to a customer.

批注 [ZL1]: Meaningful, but too much design details

CMP2515 Software Design UG2 – Team Project
Team 23

6

Overview A Customer would like to hire a vehicle; the Clerk would take their details (such
as name when from when they registered) and the desired vehicle and fill out
the required form.

Precondition UC01, UC02

Actor action System response

1. A customer would like to hire out a
vehicle.

2. The Clerk asks for vehicle and customer
details (such as name or ID).

3. Clerk searches for vehicle. 4. System shows vehicle details.

5. Clerk pulls up the rental page. 6. System presents fields to enter data.

7. Clerk enters customer and vehicle
details onto the form.

8. System verifies the data entered to
make sure it is correct.

 9. System generates a reference number
for the hire.

10. Clerk gives reference number to
customer.

11. Clerk gives vehicle to customer. 12. Vehicle is rented out.

Table 3 – Hire a vehicle

Use Case UC04 – Process return of a vehicle

Actor(s) Customer (initiator), Clerk

Purpose Process the return of a returning vehicle.

Overview Once the customer’s hire period has ended, they will return the vehicle to the
company who will process the return and calculate the cost of hire to bill the
customer.

Precondition UC01, UC03

Actor action System response

1. A customer would like return a hired
vehicle.

2. The Clerk asks for customer details.
(Unique attributes)

3. Clerk searches for customer. 4. System shows customer details and
also details of hired vehicle.

5. Clerk clicks on a button to accept the
return vehicle such as ‘End hire’ or
‘Return’.

6. Clerk manually inputs the new mileage
of the vehicle

7. System displays vehicle as returned and
updates mileage count.

 8. The system logs date of return.

 9. System calculates the cost of hire by
multiplying the number of days hired
by the daily hire rate of the vehicle.

 10. System displays the amount owed by
the customer.

11. Clerk bills the customer. 12. Vehicle is returned.

13. Customer pays (cash). 14. A receipt is printed for the customer.

 15. System logs the hire by saving the hire
details to appropriate places such as
the vehicle’s hire history and to the

CMP2515 Software Design UG2 – Team Project
Team 23

7

customer’s history.

Table 4 – Return a vehicle

Use Case UC05 – Determine service

Actor(s) Clerk (initiator)

Purpose To check if a vehicle needs servicing.

Overview Once a vehicle has been returned to the company, the Clerk will update the
vehicle’s mileage on the database; if this figure has reached the 6,000 or 12,000
mile interval then it is booked in for a service.

Precondition UC01, UC04

Actor action System response

1. On return of a vehicle the Clerk inputs
the mileage.

2. System calculates if the mileage has
passed the 6,000 or 12,000 interval.

 3. If the mileage has not passed the
intervals then vehicle is not booked for
a service.

 4. If the mileage has passed only passed
the 6,000 mile interval it is
automatically booked for a minor
service.

 5. If the mileage has passed the 12,000
miles interval it is automatically booked
in for a major service.

Table 5 – Determine if vehicle needs servicing

Use Case UC06 – Record service

Actor(s) Mechanic (initiator)

Purpose To record the details of a servicing.

Overview Once a vehicle has been booked in for a service by the system, a mechanic will
carry out the service. The following details need to be recorded: date of
service, type of service and mechanic who carried out the job.

Precondition UC01, UC05

Actor action System response

1. Mechanic opens the vehicle record. 2. System shows the vehicle details
including the type of service required.

3. Mechanic determines the type of
service they need to carry out.

4. Mechanic carries out the service of the
vehicle.

5. Mechanic inputs the type of service,
date of service and their name.

6. System verifies data types and on
verification will update the vehicle
record to show the servicing details.

Table 6 – Record details of service

Use Case UC07 – Remove Customer

Actor(s) Customer (initiator), Clerk

Purpose Remove the details of a Customer

Overview A Customer would like to leave the services of the company, the Clerk would
find the Customer’s details and remove them from the system.

Precondition UC01, UC02

Actor action System response

CMP2515 Software Design UG2 – Team Project
Team 23

8

1. Customer would like to leave the
company.

2. Clerk initiates the unregistering process
by opening relevant program/database.

3. Clerk searches for the Customer in the
database

4. Customer is found and details are
presented.

5. Clerk chooses to unregister the
customer.

6. System removes the details of the
customer.

 7. Customer is unregistered.

Table 7 – Remove customer

Use Case UC08 – Add vehicle

Actor(s) Management (initiator)

Purpose Add new vehicle to fleet

Overview Management add a new vehicle to the fleet with required attributes being
make, model, engine capacity, hire class and daily hire rate.

Precondition UC01

Actor action System response

1. A new vehicle is acquired, Management
want to add the vehicle to its existing
fleet.

2. Management open relevant
program/database.

3. The system requests details and
provides fields for data entry.

4. Management enters and submits the
required details (make, model, engine
capacity, hire class, daily hire rate, and
date of registration).

5. The system verifies the data types and
saves details if correct.

 6. New vehicle has been successfully
added to the fleet.

Table 8 – Add vehicle

Use Case UC09 – Remove vehicle

Actor(s) Management (initiator)

Purpose Remove vehicle from fleet

Overview Management search for the unwanted vehicle and remove it from the system,
this could be for a number of reasons e.g. vehicle is damaged, vehicle is too old
etc.

Precondition UC01, UC08

Actor action System response

1. A vehicle is no longer in the fleet for
whatever reason, Management want to
remove from database.

2. Management opens relevant
program/database.

3. Management searches for the desired
vehicle.

4. The system presents the details of the
vehicle.

5. Management chooses to
delete/remove from database.

6. System deletes the data.

 7. The vehicle has been successfully
removed from the fleet.

CMP2515 Software Design UG2 – Team Project
Team 23

9

Table 9 – Remove vehicle

Use Case UC10 – Add mechanic

Actor(s) Management (initiator), Mechanic

Purpose Register a Mechanic with the company

Overview Management acquires the details of the newly hired Mechanic and adds them
to the company database.

Precondition UC01

Actor action System response

1. Management must keep a record of
each mechanic.

2. Management initiates the registration
process (e.g. opening relevant
program/database)

3. The system presents fields to enter the
Mechanic information.

4. Management acquires information
from Mechanic (Name, Address, Home
Telephone)

5. Management checks if the Mechanic
holds a current driving license.

6. Upon confirmation of license,
Management enters these details into
the system.

7. System verifies data types and saves
the information.

 8. Mechanic is registered.

Table 10 – Add mechanic

Use Case UC11 – Remove mechanic

Actor(s) Mechanic (initiator), Management

Purpose Remove details of a Mechanic

Overview A Mechanic is leaving the company; their details are to be removed.
Management will search for the departing Mechanic and remove them from
the system.

Precondition UC01, UC10

Actor action System response

1. Mechanic is leaving the company;
Management must keep a record of
each mechanic.

2. Management initiates removal process
by opening relevant program/database

3. Management searches for the
departing Mechanic’s details.

4. The Mechanic’s details are presented
by the system.

5. Management chooses the
remove/delete the departing
Mechanic’s details

6. System deletes the Mechanic’s details.

 7. Mechanic is
unlisted/unregistered/removed from
company system.

Table 11 – Remove mechanic

Use Case UC12 – List services

Actor(s) Management (initiator)

CMP2515 Software Design UG2 – Team Project
Team 23

10

Purpose To list the details and history of all services.

Overview If required, the management can look at the data of all the previous services a
vehicle has had. This may be useful when deciding whether to keep the vehicle
in the fleet or not.

Precondition UC01, UC06

Actor action System response

1. Manager opens vehicle page 2. Vehicle page is displayed

3. Manager clicks on a button (such as
view service history) to view a history
of all services carried out on said
vehicle.

4. The history of the vehicle’s services are
displayed, includes information such as
date of service, type of service and
mechanic who serviced the vehicle.

Table 12 – List service history

Use Case UC13 – List hires

Actor(s) Management (initiator)

Purpose To list the details and history of all hires of a vehicle.

Overview If required, the management is able to look at the details of all previous hires a
vehicle has had. This may be useful when deciding whether to keep a vehicle in
the fleet or not, as well as locating specific details e.g. details of a customer
who has previously hired the vehicle.

Precondition UC01, UC04

Actor action System response

1. Manager opens vehicle page 2. Vehicle page is displayed

3. Manager clicks on a button (such as
view hire history) to view a history of all
hires of said vehicle.

4. The history of the vehicle’s hires are
displayed, includes information such as
dates of hire, customers who hired
them, cost of each hire.

Table 13 – List hire history

CMP2515 Software Design UG2 – Team Project
Team 23

11

Use Case Diagram

The following diagram best represents the identified use cases in the software design for BCHC:

Figure 1 – Use Case Diagram

The use case diagram shows how each actor is involved with each use case. In some cases there are
two actors involved with a use case, this allows for actors to interact with each other when required.

CMP2515 Software Design UG2 – Team Project
Team 23

12

Conceptual Class Diagram

For the OO design, classes will be required for the functionality of the system, these classes can be
conceptualised from the Use Case Diagram. The following classes have been identified:

 Clerk

 Customer

 Hire

 Management

 Mechanic

 Vehicle

Each class will have attributes which will be changed in the different states of the objects created by
the classes. This conceptual model shows how the classes interact with each other:

The conceptual class diagram shows how the system is linked and the attributes needed within each
section. Alongside this, it shows what data types are needed for each section within the specific
table.
The link between each of these classes is listed below:

 MANAGEMENT manages the CLERKS, MECHANICS AND VEHICLES

 MECHANIC services the VEHICLES

 CUSTOMER hires the VEHICLE

 CLERK registers THE CUSTOMERS and makes the HIRE transaction

批注 [ZL2]: Missing important classes and associations

CMP2515 Software Design UG2 – Team Project
Team 23

13

Within the Clerk and Management classes, the same information is needed. They need to enter a
username and password that would be specific to the user which would be given when the system
has been set up. By providing a username and password it limits each user to the amount of data
they can access and to what they can enter into the system. These both have the data type of string
as this means that the username and password can be made up with either or both numbers and
letters. The name and address is also needed within both tables as this will establish what person
works for BCHC and where they live as this is also essential information that is needed by the
company. Again these are of the string datatypes, the names will only contain letters whereas the
address will contain a mixture of letters and numbers as the house number and post code are also
needed. The phone number is needed as a form of contact if the management ever wish to get in
contact with their staff or vice versa to discuss something important. The employee ID is also
required as this differentiates each staff member to one another and allows management to know
who has done what transaction within the company when signed in using their unique employee ID
number. This can also help with the payroll system as it makes it easier to distinguish who has
worked how many hours and how much they need to be paid. These both use the datatype integer
as they will both contain numbers and nothing else. Finally they both need to input their D.O.B into
the system as this will ensure that the company hire employees that follow the legal ages limit but
also helps determine how much they should be getting paid. The datatype for this is Date as this is
the format it will be entered in.

Within the Hire class, information needed is about the transaction that would be processed. Firstly,
the registration number is needed of the vehicle that will be hired out to the customer. By doing this
it helps track where the car is and who it is with. The datatype for the registration number is string
as again this will contain both letters and numbers making it a unique attribute to each vehicle. The
staff then enter the hire start and finish date and the actual hire finish date (upon return, only if it
differs). Again all these need to be entered for the staff of BCHC to know where the cars are, what
customer they are with and when they are going to be returned to the company. The datatypes that
have been used for this are Date as this would make it easy for the staff to read the dates that are
involved in the hire transaction. The staff also need to enter the daily hire rate into the system as
each car would have a different price depending on the make and model and any extra features that
are included i.e. Sat Nav and Bluetooth. The datatype that is needed for this is Integer as the data
that will be entered is the price (numbers) which can go into triple or quadruple figures if necessary.
A Rent ID and Customer ID are then needed to be entered into the system as this will make each
transaction unique and every customer unique as well. Having a Customer ID will also benefit the
company as this will make it easier when creating a new transaction for customer that has already
been registered. Therefore this helps save the company time as they will not need to fill in the
details again as they will already be saved on the system. Cost of the Hire is also needed as this will
show both the customer and the clerk the total price that is needed to be paid for the duration of
the hire. The datatypes that are needed for these are Integer as these will only incorporate numbers
which help make the IDs unique and for the price.

The Customer class requires similar information to the staff (as people share most attributes) as this
will help register every customer that makes a transaction and allows their details to be stored on
the system. The details that are required are the name and contact details such as their address and
telephone number. These are needed to ensure that BCHC has some form of communication
method when needed to get in touch with the customer. The datatypes that are used for the name
and address are string as this will allow alphanumeric values to be entered, whereas, the datatype
that is used for the phone number is Integer as only numbers need to entered otherwise it would
make the field invalid giving a false telephone number. Again the Customer ID is needed which allow
every customer to be uniquely identify which will then link to the Hire table ensuring that the same
customer has the same ID number throughout the whole process. The datatype that is needed for

CMP2515 Software Design UG2 – Team Project
Team 23

14

this is Integer as this will only incorporate numbers which will help make the ID unique. The clerk
also needs to enter the date of birth of the customer as this will ensure that they are of the legal age
to carry out the transaction and hire the vehicle. The datatype for this is Date as this is the format it
will be entered in.

The Mechanic table again requires similar information to the Management and Clerk tables as they
also work for BCHC. Again the name and contact information such as the address and phone number
are needed in case the management need to get in touch with them. The datatypes that are used for
the name and address are string as this will allow alphanumeric values to be entered, whereas, the
datatype that is used for the phone number is Integer as only numbers need to entered otherwise it
would make the field invalid giving a false telephone number. As the mechanics work for BCHC they
will also require an Employee ID as this will provide them with a unique number at the company
which will allow management to search for the mechanics details easily using the Employee ID
number. The mechanics also need enter their driving licence number as the management requires a
valid driving licence in order to work for the company. By entering this data into the system, it is
easy for the management team to track this information and always keep the data updated. As well
as this date of birth also needs to be entered into the system as this will ensure that they are of the
legal age requirement to work and again this will help with the payroll as it will ensure that they are
getting paid the amount they deserve. The datatype for this is Date as this is the format it will be
entered in.

The Vehicle class requires information concerning the vehicle that the fleet holds. The team first

need to input the make and model and the registration number of the vehicle as this will establish

what type of vehicle it is and the sort of price that would be assigned to it when being hired. The

registration is a unique ID so this needs to be entered as the team can search for a car in the system

using this unique identifier. The datatype that is set for these fields are string as this will allow the

team to enter alphanumeric values into the system as some of the model names and the registration

numbers may contain numbers. The engine capacity also needs to be entered into the system as this

is important information that needs to be registered with the car as well as the mileage having to be

entered. This needs to be entered because the company needs to keep track how much the car is

being driven by each customer which will help the clerks know when the car needs to be serviced.

The datatypes that are used for these fields are Integer as these are only numbers that are have to

entered as no letters are involved. The date of registration and the date of services need to be

entered as this is crucial for the company as they need to keep track of when the cars need to be

serviced again depending on how much mileage they have done. The datatypes that are used for this

are in the date format as this will make it easier for the clerks and management to read it when

searching for information.

CMP2515 Software Design UG2 – Team Project
Team 23

15

Part II

System Sequence Diagrams

The following System Sequence Diagrams (based on the identified use cases) show how the actors
relate to each other and the system. Appropriate methods and operations have been identified for
use by classes and objects.

Figure 2 – UC01 Sequence Diagram

Figure 3 – UC02 Sequence Diagram

CMP2515 Software Design UG2 – Team Project
Team 23

16

Figure 4 – UC03 Sequence Diagram

Figure 5 – UC04 Sequence Diagram

CMP2515 Software Design UG2 – Team Project
Team 23

17

Figure 6 – UC05 Sequence Diagram

Figure 7 – UC06 Sequence Diagram

Figure 8 – UC07 Sequence Diagram

批注 [ZL3]: Only show direct actir(s), and interaction with the
system

CMP2515 Software Design UG2 – Team Project
Team 23

18

Figure 9 – UC08 Sequence Diagram

Figure 10 – UC09 Sequence Diagram

Figure 11 – UC10 Sequence Diagram

CMP2515 Software Design UG2 – Team Project
Team 23

19

Figure 12 – UC11 Sequence Diagram

Figure 13 – UC12 Sequence Diagram

Figure 14 – UC13 Sequence Diagram

CMP2515 Software Design UG2 – Team Project
Team 23

20

Contracts

The operations and methods which were identified from the system sequence diagrams are further
explained through the use of contracts.

Contract login

Name login(username: String, password: String)

Responsibilities Allow a user to log into the system.

Type System

Cross References UC01

Note Allows the use of separate accounts for different level employees.

Exceptions If the username and password combination is not correct, log in will fail.

Output -

Pre-conditions Account names and log in details are known to the system

Post-conditions Account name is set to the employee ID

Table 14 – login()

Contract registerCustomer

Name registerCustomer(name: String, address: String, DOB: Date, customerID:
Integer)

Responsibilities Register a customer to the company database to allow them to use the hire
services.

Type System

Cross References UC02

Note -

Exceptions Indicate error if duplicate information.

Output -

Pre-conditions

Post-conditions Customer is created

Table 15 – registerCustomer()

Contract searchVehicle

Name searchVehicle(registration number: String)

Responsibilities Allows employees to find vehicles in the fleet.

Type System

Cross References UC03, UC04, UC09, UC12, UC13

Note -

Exceptions Indicate error if search parameters return no results.

Output Display vehicle searched for.

Pre-conditions

Post-conditions Vehicle is associated to employee

Table 16 – searchVehicle()

Contract startHireProcess

Name startHireProcess()

Responsibilities Initialises the hire process.

Type System

Cross References UC03

Note -

CMP2515 Software Design UG2 – Team Project
Team 23

21

Exceptions -

Output Displays form for vehicle hire.

Pre-conditions

Post-conditions Hire instance created

Table 17 – startHireProcess()

Contract hireVehicle

Name hireVehicle(registration number: String, hire start: Date, hire finish: Date,
hire rate: Integer, rentID: Integer, customerID: Integer)

Responsibilities Hires a vehicle out to a customer.

Type System

Cross References UC03, UC04

Note -

Exceptions Indicate error if trying to hire a vehicle already rented out.
Indicate error if customer ID is not recognised.
Indicate error if vehicle ID is not recognised.

Output -

Pre-conditions

Post-conditions Customer associated to vehicle
Customer associated to hire

Table 18 – hireVehicle()

Contract generateReferenceNo

Name generateReferenceNo()

Responsibilities Generates a unique reference number for the transaction.

Type System

Cross References UC03

Note It would be sensible to have the number increment by 1 for each separate
hire.

Exceptions The number cannot be the same as one already generated an in use.

Output A unique number is generated in reference to the hire transaction.

Pre-conditions

Post-conditions

Table 19 – generateReferenceNo()

Contract searchCustomer

Name searchCustomer(customerID: Integer)

Responsibilities Allows employees to search for customers.

Type System

Cross References UC04, UC07

Note -

Exceptions Indicate error if customer ID is not recognised.

Output Display customer details.

Pre-conditions

Post-conditions Customer is associated to emloyee

Table 20 – searchCustomer()

CMP2515 Software Design UG2 – Team Project
Team 23

22

Contract endHire

Name endHire()

Responsibilities Allows the clerk to end the hire.

Type System

Cross References UC04

Note -

Exceptions -

Output -

Pre-conditions

Post-conditions Hire is logged, associated with listHires

Table 21 – endHire()

Contract updateMileage

Name updateMileage(mileage: Integer)

Responsibilities Allows the mileage of a vehicle to be updated on return.

Type System

Cross References UC04, UC05

Note -

Exceptions -

Output -

Pre-conditions

Post-conditions Vehicle.Mileage is changed

Table 22 – updateMileage()

Contract calculateCostOfHire

Name calculateCostOfHire()

Responsibilities Cost of the hire transaction is calculated.

Type System

Cross References UC04

Note Finish date may be different to the one originally agreed upon.

Exceptions -

Output Display amount to be charged.

Pre-conditions

Post-conditions cost of hire set to output of calculateCostOfHire

Table 23 – calculateCostOfHire()

Contract printReceipt

Name printReceipt()

Responsibilities Prints the details of the billing for the customer.

Type System

Cross References UC04

Note Displays relevant information such as clerk name or ID, date of billing, dates
of hire, time, amount charged, hire ID.

Exceptions -

Output Generates a receipt of payment.

Pre-conditions

Post-conditions

Table 24 – printReceipt()

CMP2515 Software Design UG2 – Team Project
Team 23

23

Contract evaluateMileage

Name evaluateMileage(mileage)

Responsibilities Mileage is evaluated to see if it has reached the 6,000 or 12,000 mile
threshold after which a vehicle must be serviced.

Type System

Cross References UC05

Note Should be able to differentiate between a minor and major service as 6,000
is a factor of 12,000 but represents a minor service.

Exceptions If mileage has not hit an interval of 6,000 then do nothing.

Output -

Pre-conditions

Post-conditions

Table 25 – evaluateMileage()

Contract bookService

Name bookService()

Responsibilities Book a vehicle to be serviced by a mechanic.

Type System

Cross References UC05

Note If after evaluateMileage, mileage has passed an interval of 6,000 then the
vehicle is automatically booked in for a service.

Exceptions -

Output -

Pre-conditions

Post-conditions

Table 26 – bookService()

Contract updateServiceRecord

Name updateServiceRecord()

Responsibilities Allows a mechanic to update the service record of a vehicle as required.

Type System

Cross References UC06

Note -

Exceptions -

Output -

Pre-conditions

Post-conditions Vehicle is associated to Mechanic
Service record updated, listServices associated to Vehicle

Table 27 – updateServiceRecord()

Contract unregisterCustomer

Name unregisterCustomer(customerID: Integer)

Responsibilities Allows a clerk to unregister a customer who no longer wants to use the
services of the company.

Type System

Cross References UC07

Note -

Exceptions Indicate error if customer ID is not recognised.

Output -

CMP2515 Software Design UG2 – Team Project
Team 23

24

Pre-conditions

Post-conditions

Table 28 – unregisterCustomer()

Contract addVehicle

Name addVehicle(make: String, model: String, registration number: String, engine
capacity: Integer, hire class: Integer)

Responsibilities Allows a member of the management to add a vehicle to the fleet.

Type System

Cross References UC08

Note -

Exceptions Indicate error if duplicate record.

Output -

Pre-conditions

Post-conditions Instance of Vehicle created

Table 29 – addVehicle()

Contract removeVehicle

Name removeVehicle(registration number: String)

Responsibilities Allows a member of the management to remove a vehicle from the fleet.

Type System

Cross References UC09

Note -

Exceptions Indicate error is registration number not recognised.

Output -

Pre-conditions

Post-conditions

Table 30 – removeVehicle()

Contract addMechanic

Name addMechanic(name: String, address: String, licence: String, number:
Integer, DOB: Date, employeeID: Integer)

Responsibilities Allows a member of the management to add a mechanic to the company.

Type System

Cross References UC10

Note -

Exceptions -

Output -

Pre-conditions

Post-conditions Instance of Mechanic created
Mechanic associated to Management

Table 31 – addMechanic()

Contract searchEmployee

Name searchEmployee(employeeID: Integer)

Responsibilities Allows the management to search for an employee.

Type System

Cross References UC11

Note Is useful when searching for a mechanic when removing them.

CMP2515 Software Design UG2 – Team Project
Team 23

25

Exceptions Indicate error if ID not recognised.

Output Display employee details.

Pre-conditions

Post-conditions Employees associated to Management

Table 32 – searchEmployee()

Contract removeMechanic

Name removeMechanic()

Responsibilities Allows a member of the management to remove a mechanic from the
company.

Type System

Cross References UC11

Note -

Exceptions -

Output -

Pre-conditions

Post-conditions

Table 34 – removeMechanic()

Contract listServices

Name listServices()

Responsibilities Lists the service history of a vehicle if any.

Type System

Cross References UC12

Note -

Exceptions -

Output Shows a list of services provided to a vehicle.

Pre-conditions

Post-conditions listServices associated to Management

Table 35 – listServices()

Contract listHires

Name listHires()

Responsibilities Lists the hire history of a vehicle if any.

Type System

Cross References UC13

Note -

Exceptions -

Output Displays the hire history of a vehicle.

Pre-conditions

Post-conditions listHires associated to Management

Table 36 – listHires()

批注 [ZL4]: Good contracts

CMP2515 Software Design UG2 – Team Project
Team 23

26

Part III

Collaboration Diagrams

Below are the collaboration diagrams which show the interaction between different objects during
the use cases.

Figure 15 – UC01

Figure 16 – UC02

Figure 17 – UC03

Figure 18 – UC04

批注 [ZL5]: Not quite a good one

CMP2515 Software Design UG2 – Team Project
Team 23

27

Figure 19 – UC05

Figure 20 – UC06

Figure 21 – UC07

Figure 22 – UC08

Figure 23 – UC09

Figure 24 – UC10

CMP2515 Software Design UG2 – Team Project
Team 23

28

Figure 25 – UC11

Figure 26 – UC12

Figure 27 – UC13

Patterns

Expert – This pattern concerns the delegation of responsibilities, it determines the information
needed to fulfil a responsibility and then determines which class has the most information to fulfil
the responsibility, thus placing it with that class. There are a number of information experts in the
design, these include:

 Clerk – holds information of clerk

 Management – holds information of its own objects

 Mechanics – holds information of its own objects

 Customer – holds information of its own objects

 Vehicle – holds attributes of vehicle objects

 Hire – holds information of the hire, this includes vehicle and customer information as well
as information unique to the hire such as cost, dates and a rent ID.

Creator – The Creator pattern concerns the creation of objects when desired; it is one of the most
common functionalities of an OO system. In the system design, there are a few creators, these
consist of:

 Clerk – can create a customer object (UC02) and an instance when searching for a customer
(UC04, UC07). Also creates an instance of Hire (UC03) and Vehicle when searching (UC03,
UC04).

 Management – can create a Vehicle object (UC08) and a Mechanic object (UC10), it can
create instances of Vehicle when searching for one (UC09, UC12, UC13) and Mechanic
(UC11).

Low Coupling – Low Coupling concerns the assigning of responsibilities between classes to achieve
lower dependency between them and for a higher reuse potential. A certain degree of low coupling
seems to be achieved with this solution as classes aren’t massively dependent on others although
this can be improved by the introduction of intermediary objects/classes to reduce the workload of
some specific classes (such as Management and Clerk).

CMP2515 Software Design UG2 – Team Project
Team 23

29

High Cohesion – High Cohesion concerns the attempt to keep objects focused and understandable,
this can be thought of as having more related responsibilities between classes. Whilst some of the
classes carry a number of operations, they are focused rather than irrelevant so there is a factor of
high cohesion shown by the design. This can be improved by perhaps splitting responsibilities further
to gain further focus.

Controller – The Controller pattern deals with system events in a non-UI class which represents the
system as a whole when handling an event. Whilst it hasn’t been clearly defined in the collaboration
diagrams, the use of a Controller is necessary to facilitate such events as logging in, saving and
retrieving data and other maintenance tasks. It can be thought of as a service layer which operates
behind the UI.

Class Diagram

From the conceptual class diagram and the collaboration diagrams, it was possible to produce the
following class diagram:

CMP2515 Software Design UG2 – Team Project
Team 23

30

Appendix

Project Diary

Date/time Location Attended Points of Discussion

11/02/15
14.00 – 14.30

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 What needs to be achieved by the
end of the coursework

 What a Use Case is

 How to delegate the coursework
tasks

18/02/15
14.00 – 14.30

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 Check how far everyone has got
with their tasks

 Discuss the features of object
orientated design and behavior of
use cases

 Practice using Visual Paradigm as
a group

25/02/15
14.00 – 14.30

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 Discuss object sequence diagrams

 Methods of objects

 How everyone is coping with the
coursework

11/03/15
14.00 – 14.30

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 How everyone is coping with the
coursework

 Discuss class diagrams

 Understand the expert pattern

18/03/15
14.00 – 15.00

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 How everyone is coping with the
coursework

 Know what the coupling pattern
is

 Understand cohesion pattern

25/03/15
14.00 – 14.30

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 How everyone is coping with the
coursework

 Help each other with what still
needs attention

08/04/15
14.00 – 15.00

Student Union

Anil Jassi
Ajmal Esakhail
Aaron Joseph
Damani Lana
Uzair Shah
Pavendeep Kaur Hayre

 How everyone is coping with the
coursework

 Start putting everything together
and get it ready for submission

CMP2515 Software Design UG2 – Team Project
Team 23

31

Glossary

Object-Oriented (OO) programming – Programming modelled around objects and data based on the
real world.
Object – An instance of a class which holds certain variables.
Use cases – steps defining interactions between actors and the system responses to this.
Actor – Carries out tasks which can affect the response of the system.
Initiator – The actor who takes the first step to initiate a use case.

