
+

CMP5215: Software Design UG2 Team Project

Produced By:

Ciaran Keogh- s13161658, Thomas Hulme, Matthew Hinton, Bilal Husain, James Frith,

Abdul Lefsay

Contents
I. The Initial Requirements Understanding ... 3

System Functions .. 3

Identifying the Essential Use Cases and Producing Expanded Use Cases 7

Use Case Diagram .. 23

Conceptual Class Diagram ... 24

II. Functionality Analysis of System Operations ... 28

System Sequence Diagrams .. 28

System Operation Contracts ... 33

III. Use Case Design ... 45

Object Sequence Diagrams .. 45

High cohesion: ... 49

Design Class Diagram .. 53

Appendix .. 56

Meetings .. 56

Group Meeting 1 – Introduction ... 56

Group Meeting 2 – Introduction ... 58

Group Meeting 3 – Progress update ... 60

Group Meeting 4 – Progress update ... 62

Group Meeting 5 – Progress update ... 64

Group Meeting 6 – Conclusion .. 66

Work Allocation ... 67

I. The Initial Requirements Understanding

The Bvis Car Hire Company have asked us to design a new, paperless car hire system. This

system will record details of the company’s cars and hire transactions. An analysis of the

system requirements reveals that an object-oriented solution would be the most appropriate.

This solution would be appropriate because the concepts involved in a point of sale system can

easily be represented as classes, as they are made up of objects which share similar structures,

behavioural patterns and attributes. For example, when a car is hired, the same general process

is repeated every time. This means it can be represented by a class CarHire, and every car hire

will be an object of the CarHire class.

We can then use object-oriented design principles to realise use case operations through

interactions among objects of the classes. This would be ideal for creating a paperless system

for the company.

System Functions

System Functions have been identified, outlining what the system needs to do in order to

operate. These functions have been grouped based upon whether they will affect customers,

staff members, mechanics, or involve the hire cars themselves. Each system function has been

categorised as either hidden, evident, or frill in order prioritise them.

Customer Based System Functions

Reference # Function Category

1.1 Register a customer into the system, creating them a

customer account with the following details: Name,

Telephone Number and Address.

Evident

1.2 System should be able to automatically allocate a new ID

Number to a customer instance.

Hidden

1.3 Allow the customer to see their user details. Evident

1.4 Allow the customer to see the available cars to hire. Evident

1.5 Allow the customer to hire a particular car, using the following

details: Registration Number (unique), Make,

Model, Engine Capacity and Hire Class (1-6).

Evident

The dates of the beginning and end of the hire are

recorded (the second is an estimate and will be updated

when the vehicles is returned) as well as the number of miles

at the start of the hire period.

1.6 The customer must be able to see the daily cost of hiring a

car, based on the hire class and length of hire time.

Evident

1.7 The system should be able to calculate the cost of hiring a

particular class of car for a specified time period.

Hidden

1.8 A receipt should be printed with time of hire, time of return

and cost of hire.

Evident

1.9 System should take note of how long it has been since the

customer has registered with the system.

Hidden

1.10 The customer must be able to remove his/herself from the

system.

Evident

1.11 When a car has been returned, the details of actual return

date and mileage accumulated should be recorded.

Evident

1.12 The accumulated mileage should be added to the total

mileage in the car’s details.

Hidden

Staff Based System Functions

Reference # Function Category

2.1 Staff Member should be able to log into the system using

their user info (Name/ID and password).

Evident

2.2 Staff Member should be able to retrieve information about a

customer from the system.

Evident

2.3 Staff Member should be able to retrieve information about a

certain car from the system.

Evident

2.4 Staff Member should be able to remove a customer from the

system.

Evident

2.5 Staff Member should be able to remove a car from the

system.

Evident

2.6 Staff Member should be able to remove a mechanic from the

system.

Evident

2.7 Staff Member should be able to add a car to the system. Evident

Car Based System Functions

Reference # Function Category

3.1 A record of the cars details should be stored. This should

include: Registration Number (unique), Make,

Model, Engine Capacity and Hire Class (1-6).

Evident

3.2 Information of the car should be accessible. This should also

include Car Hire History and Car Service History.

Evident

3.3 When the car’s mileage reaches 6000 miles, an automated

notice should be sent to indicate that this car is in need of a

“minor service” to its assigned mechanic.

Evident

3.4 When the car’s mileage reaches 12000 miles, an automated

notice should be sent to indicate that this car is in need of a

“major service” to its assigned mechanic.

Evident

3.5 Car should keep a record of and update amount of time the

car has spent in service within the vehicle fleet.

Frill

Mechanic Based System Functions

Reference # Function Category

4.1 Mechanic should be able to add/register themselves into

the system, using the following details: Name, Address,

Home Telephone and Drivers License.

Evident

4.2 A Mechanic ID is automatically assigned to the Mechanic

when they are registered.

Hidden

4.3 Mechanic should be able to view a list of all the cars that he

is currently responsible for.

Evident

4.4 Mechanic should be able to write a service report that

updates the service history of a car that he has serviced.

Evident

4.5 Mechanic should be able to remove a car from the car fleet. Evident

Identifying the Essential Use Cases and Producing Expanded Use Cases

Using the system functions identified, the following essential use cases were created. The use

cases lay out the process taken in order to perform certain system functions. Both High-Level

and Expanded Use Cases have been created, adding depth and detail to each of them.

Use Cases:

Registering a new Customer

Use Case: Registering a new Customer

Actors: Customer (Initiator)

Staff Member

Purpose: To register a new customer into the system.

Overview: The Customer arrives at the registration

desk and asks to register. The Customer

supplies the required details to the Staff

Member. Once supplied, the Staff Member

records and stores the information in the

system.

Typical Course of Events

Actor Action System Response

1. The Customer arrives at the

registration desk and asks to register.

2. The Staff Member asks for the

Customers name, telephone number,

address and driving license number.

3. The Customer supplies the required

details to the Staff Member.

4. The Staff Member inputs the

information into the system.

5. The input information is saved by the system.

批注 [ZL1]: Need to log

Recording the Hire of a Particular Car

Use Case: Recording the Hire of a Car

Actors: Customer (Initiator)

Staff Member

Purpose: To record the details of a car hire made by a

customer.

Overview: The Registered Customer is at the desk and

wants to hire a car. The Staff Member records

the details of the hire i.e. identification number

of hired vehicle, date/time of hire, estimated

return date of hire and the number of miles on

the clock at the start of the hire period. The

Staff Member issues an invoice of hire for the

Customer.

Typical Course of Events

Actor Action System Response

1. The Registered Customer is at the

desk and wants to hire a car.

2. The Staff Member asks the

Customer for the date/time they wish to

hire the car, the type of car required, and

the estimated return date of the car.

3. The Staff Member checks the

availability of the chosen car in the

specified time period.

4. Checks the database to see if chosen car and

time period are available.

5. Staff Member confirms availability of

chosen vehicle and informs the customer

of the daily hire rate.

6. Generates daily hire rate for specified hire

length and car type.

7. Customer is happy with the hire and

confirms with Staff Member.

8. Staff Member confirms the booking

and inputs required information into the

system.

9. Records car hire in the database and

generates invoice.

Alternative Courses

● Line 1: A Customer may not be in the database, indicate error. Customer must

undertake registration.

● Line 5: Staff Member may inform Customer that chosen vehicle is not available.

Customer can either return to Line 2 and select another car or time period, or the

transaction is cancelled.

Recording the Return of a Particular Car

Use Case: Recording the Return of a car

Actors: Customer (Initiator)

Staff Member

Purpose: To record the details of a car return made by

a customer and calculate what the customer

is required to pay.

Overview: The Customer arrives at the desk and wants

to return a car. The Staff Member updates

the details of the specific hire with the actual

return date and the cars mileage upon return.

The cost of hire is calculated and the Staff

Member informs the Customer of the total

cost. The Customer makes a payment by

cash only and gets a receipt for his

purchase.

Typical Course of Events

Actor Action System Response

1. A Registered Customer arrives at the

desk and wants to return a car.

2. The Staff Member asks for the

booking details of the hired car.

3. The Staff Member checks for a record

of the car hire in the database.

4. Checks the database for the record of the

car hire based upon the user input.

5. Staff Member updates the hire record

with the actual return date and the

mileage upon the cars return.

6. Calculates the cost of hire based upon the

daily hire rate for the specific type of car and the

length of the hire.

7. Staff Member informs the Customer

of the cost of the hire.

8. Customer makes payment by cash

(possibly greater than the sale total).

9. The Staff Member records the cash

amount received.

10. Show the balance due back to the

customer.

Generate a receipt.

11. The Staff Member updates and logs

the hire record.

12. Specified car hire is updated, completed

and stored within the database for future

reference.

13. Customer receives receipt (and

owed cash) and then leaves.

Alternative Courses

● Line 4: No record of car hire found, indicate error.

● Line 8: Customer does not have enough cash, cancel return of hire car.

Recording a Service for a Car

Use Case: Recording a Car Service

Actors: Mechanic (Initiator)

Purpose: To record the service of a car that has been

highlighted as exceeding its service interval.

Overview: The Mechanic logs into the system and is

shown the list of cars assigned to them, the

car(s) that require a service are highlighted.

The Mechanic then performs the required

service on the car. The Mechanic updates the

car’s service record to signify the service has

been completed and logs off the system.

Typical Course of Events

Actor Action System Response

1. The Mechanic logs into the system

and accesses the list of cars that are

assigned to them.

2. Compiles a list of cars that are assigned to

the ID of the mechanic logged in.

Highlight the cars either need a minor or major

service.

3. The Mechanic checks to see which

car requires their attention first.

4. The Mechanic then performs the

necessary service on the car.

5. Upon completion of the service, the

Mechanic updates the cars service

record in the system with the time/date

of the service, the type of service

performed, car mileage at service and

the name of the mechanic responsible.

6. Updates the Car Service Record to signify the

changes input by the Mechanic.

7. The Mechanic then logs off the

system.

Alternative Courses

● Line 3: No services required on any of the other cars, mechanic can skip to Line 7 and

logoff the system.

● Line 7: More cars may require a service, mechanic can return to Line 3 and select

another car for service.

Removing a Customer

Use Case: Removing a Customer

Actors: Staff Member (Initiator)

Purpose: To remove the instance of a customer from the

system.

Overview: The Customer arrives at the registration desk

and asks to be removed from the system. The

Staff Member logs into the system and opens

the Customers file. The Staff Member then

identifies the customer(s) that they want to

remove from the system and uses the system

interface to perform the change. The Staff

Member then closes the Customers file.

Typical Course of Events

Actor Action System Response

1. The Customer arrives at the

registration desk and asks to be removed

from the system.

2. The Staff Member logs into the

system.

3. The Staff Member opens up the

Customers File.

4. Display a complete list of customers within

the system.

5. Staff Member identifies the

customer(s) they want to remove from the

system and removes them through the

system interface.

6. Removes the customer information and the

instance of the customer from the system and

updates the database to accommodate the

change.

7. The Staff Member closes the

Customers File.

Adding a New Car to the Fleet

Use Case: Adding a New Car to the Fleet

Actors: Staff Member (Initiator)

Purpose: To add a new hire car into the system.

Overview: The Staff Member logs into the system and

opens the Fleet Cars file. The Staff Member

adds the details of the new car(s) into the

system using the system interface and saves

the file. The Staff Member then closes the

Fleet Cars file.

Typical Course of Events

Actor Action System Response

1. The Staff Member logs into the

system.

2. The Staff Member opens up the Fleet

Cars file.

3. Displays a complete list of Hire Cars in the

system.

4. The Staff Member adds the details of

the new car(s) into the system, i.e.

registration number, car make, car

model, engine capacity, hire class and

date of registration.

5. Updates the Fleet Cars file to save and

display changes.

6. Staff Member closes the Fleet Cars

file.

Removing a Car that is no longer part of the Fleet

Use Case: Removing a Car that is no longer part of the

Fleet

Actors: Staff Member (Initiator)

Purpose: To remove a car that is no longer part of the

hire fleet from the system.

Overview: The Staff Member logs into the system and

opens the Fleet Cars file. The Staff Member

then identifies the car(s) that they want to

remove from the fleet and uses the system

interface to perform the change. The Staff

Member then closes the Fleet Cars file.

Typical Course of Events

Actor Action System Response

1. The Staff Member logs into the

system.

2. The Staff Member opens up the Fleet

Cars file.

3. Displays a complete list of Hire Cars in the

system.

4. Staff Member identifies the car(s) they

want to remove from the system and

removes them through the system

interface.

5. Removes the car information and the

instance of the car from the system and

updates the database to accommodate the

change.

6. The Staff Member closes the Fleet

Cars file.

Adding a New Mechanic

Use Case: Adding a New Mechanic

Actors: New Mechanic (Initiator)

Registration Officer

Purpose: To input the information of a newly recruited

mechanic into the system.

Overview: The New Mechanic arrives at the Registration

Desk and asks to register. The Mechanic

provides the necessary details to the

Registration Officer who then inputs them into

the system. The information is saved into the

system and an ID card is printed for the

Mechanic.

Typical Course of Events

Actor Action System Response

1. The New Mechanic arrives at the

Registration Desk and asks to register.

2. The Registration Officer asks the

Mechanic for their name, date of birth,

address, home telephone number and a

valid drivers license.

3. The Mechanic provides the required

details to the Registration Officer.

4. The Registration Officer inputs the

provided information into the system as a

new mechanic entry. Along with

additional info i.e. Unique ID No., Job

Title and Workstation.

5. Creates a new instance of the new mechanic

entry with the information provided. The

information is saved into the system.

6. With the information in the system, the

Registration Officer prints a new ID

card for the Mechanic.

7. Print an ID card with the details of the new

mechanic on it.

Alternative Courses

● Line 2: Mechanic does not have a valid drivers license, cancel Mechanic Registration.

Removing a Mechanic who has left the Company

Use Case: Removing a Mechanic who has left the

Company.

Actors: Staff Member (Initiator)

Purpose: To remove a mechanic who has left the

company from the system.

Overview: The Staff Member logs into the system and

accesses the Mechanics file. The Staff

Member then identifies the mechanic(s) that

they want to remove from the system (via. the

Mechanic Name or ID) and uses the system

interface to perform the change. The Staff

Member then closes the Mechanics file.

Typical Course of Events

Actor Action System Response

1.The Staff Member logs into the system.

2. The Staff Member opens up the

Mechanics file.

3. Displays a complete list of Mechanics in the

system.

4. Staff Member identifies the

mechanic(s) they want to remove from

the system and removes them through

the system interface.

5. Removes the mechanic information and the

instance of the mechanic from the system and

updates the database to accommodate the

change.

6. The Staff Member closes the

Mechanics file.

Recovering the Information of a Hire Car

Use Case: Recovering the Information of a Hire Car

Actors: Staff Member (Initiator)

Purpose: To return the information of a specified Hire

Car in the system.

Overview: The Staff Member logs into the system and

accesses the Fleet Cars file. The Staff

Member selects a specific car by inputting it’s

registration number. The System then displays

the relevant details about the car. Upon

reviewing the information the Staff Member

closes the Fleet Cars file.

Typical Course of Events

Actor Action System Response

1.The Staff Member logs into the

system and accesses the Fleet Cars file.

2. Displays a list of all hire cars in the fleet.

3. The Staff Member selects a specific

car by either looking through the file or

entering it’s registration number.

4. The System checks for the input registration

number and displays the information about the

selected hire car i.e. Registration Number, car

make, car model, engine capacity, hire class

and date of registration.

5. The Staff Member then views the

information and upon completion, closes

the Fleet Cars file.

Alternative Courses

● Line 4: Invalid registration number input, Staff Member can try again by inputting another

value.

Recovering a Car’s Hire History

Use Case: Recovering a Car’s Hire History

Actors: Staff Member (Initiator)

Purpose: To return the Hire History of a specified Hire

Car in the system.

Overview: The Staff Member logs into the system and

accesses the Car Hire Record file. The Staff

Member selects a specific car by inputting it’s

registration number. The System then displays

the hire history of the specified car. Upon

reviewing the information the Staff Member

closes the Car Hire Record file.

Typical Course of Events

Actor Action System Response

1.The Staff Member logs into the

system and accesses the Car Hire

Record file.

2. Displays a list of all hire cars in the fleet.

3. The Staff Member selects a specific

car by either looking through the file or

entering it’s registration number.

4. The System checks for the input registration

number and displays the selected cars hire

status/history.

5. The Staff Member then views the

information and upon completion, closes

the Car Hire Record file.

Alternative Courses

● Line 4: Invalid registration number input, Staff Member can try again by inputting another

value.

● Line 4: No hire history available for selected car, Staff Member can search for another

car instead or close the file.

Recovering a Car’s Service History

Use Case: Recovering a Car’s Service History

Actors: Staff Member (Initiator)

Purpose: To return the Service History of a specified

Hire Car in the system

Overview: The Staff Member logs into the system and

accesses the Car Service Record file. The

Staff Member selects a specific car by

inputting it’s registration number. The System

then displays the service history of the

specified car. Upon reviewing the information

the Staff Member closes the Car Service

Record file.

Typical Course of Events

Actor Action System Response

1.The Staff Member logs into the system

and accesses the Car Service Record file.

2. Displays a list of all hire cars in the fleet.

3. The Staff Member selects a specific car

by either looking through the file or entering

it’s registration number.

4. The System checks for the input

registration number and displays the

selected cars service status/history.

5. The Staff Member then views the

information and upon completion, closes the

Car Service Record file.

Alternative Courses

● Line 4: Invalid registration number input, Staff Member can try again by inputting another

value.

● Line 4: No service history available for selected car, Staff Member can search for

another car instead or close the file.

Use Case Diagram

A use case diagram has been produced, illustrating the use cases that make up the company

system. This shows the relationships between the actors and all the use cases, as well as the

relationships between use cases.

The following Use Case Diagram shows:

● The Customer actor is related to a number of use cases; such as Add Customer,

Obtaining Car Info, Hiring a Car and Returning a Car.

● The Staff Member actor is also related to a number of use cases. These being

Removing Mechanic, Recovering Customer details, Adding Car, Removing Car, Car

Sevice History and Car Hire History.

● The Mechanic shares some of the same use cases as staff but has its own unique ones.

These unique ones are Adding a Mechanic and Recording Car Service.

● This diagram will help identify the classes that will be used in the system.

批注 [ZL2]: Diagram does not seem to be produced by the
tool

Conceptual Class Diagram

A conceptual class diagram has been produced, this is based upon all of the concepts and

classes that have been identified.

Identification of Concepts

● BvisSys: The main electronic system that receives the main inputs from the UI interface,

and manages the events between the system and the UI.

Attribute: None.

● Customer: Concept that represents the details of the customer Actor.

Attributes: CustName:text, CustAge:Number, CustTele: Number, CustAddress: address

● Mechanic: Concept that represents the deTails of a mechanic.

Attributes: mechanic attributes: MechanicName, MechanicAge, address, DiversLicense.

● CarService: the concept a car service report that a mechanic makes when a car reaches

a certain amount of mileage and requires a service.

Attributes:ServiceDate, Servicetype, ServiceNote

● CarFleet:Concept of a the record and organising of the complete fleet of car currently

owned by the company.

Attributes:None.

● Car: Concept of an instance of a car being represented in the system.

Attibutes: CarMake, CarModel, EngineCapacity, Mileage, CarRegNum,

● Hire: the concept a Hiring a car , comprised two main stages, the start hire where the

customer chooses which car to hire, and the return of the car at the end of the hire.

Attributes: HireNumber, DiverLicense

批注 [ZL3]: There are some redundant classes in the class
diagram

● HireStart:first stage of a hire: responsible for keeping record of the start date of the hire,

gathering the details of the car that is being used for the hire, and the initial mileage.

Attributes:StartDate, StartMileage, ExpendedReturnDate

● HireReturn: Second stage of a hire: responsible for recording the return date and update

mileage.

Attributes:ReturnDate, NewMileage.

● HireDailyCost: the cost generated by the difference in the number of days between the

start hire date and the end of the hire.

Attribute: none

● Invoice: output from the Hire start that gives the details of the hire from the start.

Attribute: none

● Receipt: final output of the hire task, and proof of purchase.

Attribute: none

Glossary Terms For Conceptual Model

Term Category Meaning/Comments

BvisSys Type(Class) The main interface point to

contact other concepts and

use cases.

Customer Type(Class) Storing customer details and

information.

Customer.CustomerName:string Attribute Name of the customer.

Customer.CustomerAge:Number Attribute The age of the customer.

Customer.CustomerTele:Number Attribute Telephone number for the

customer.

Customer.Address:address Attribute The house number, street

name and postcode of the

customer.

Mechanic Type(Class) Storing the details of a new

mechanic.

Mechanic.MechanicName:string Attribute The name of the mechanic.

Mechanic.MechanicAge:Number Attribute The age of the mechanic.

Mechanic.Address:address Attribute The address of the

mechanic.

Car Type(Class) Creates an instance of a new

car and stores the

information.

Car.CarRegNum:string Attribute Car registration number.

Car.CarMake:string Attribute Car Make, i.e. Company that

makes the car.

Car.CarModel:string Attribute Model name of the car.

Car.EngineCapacity:string Attribute The engine capacity of the

car.

Car.HireClass:number Attribute The hire class number of a

car.

Car.Mileage:number Attribute The current mileage value of

a car.

CarService Type(Class) Used to create an instance of

a service report made by a

Mechanic.

CarService.ServiceDate:date Attribute Storing the date of the

service in question.

CarService.ServiceType:String Attribute The type of service being

made (Minor/Major).

CarServiceRecord Type(Class) Stores every new instance of

a car service and used to call

upon a list of new instances.

CarHireRecord Type(Class) Stores every new instance of

a car hire for a car.

Hire Type(Class) Creates an instance of a hire

process.

Hire:DiverLicense.DiverLicense Attribute Storing the Divers License.

HireStart Type(Class) Creates an instance of

starting process for a hire

class.

HireStart.HireDate:Date Attribute Stores the start date of a Hire

process.

HireStart.OrginalMileage:number Attribute Stores the original mileage

record in hire process.

HireStart.Date.ExpReturnDate Attribute Stores the date of the

expected return date of a

hire.

HireReturn Type(Class) Contains the information of

the return details of a hire

process.

HireReturn.ReturnHireDate:Date Attribute The date of the car being

returned.

HireReturn.Mileage.Number Attribute The new mileage of the

return car in a hire process.

HireCost Type(Class) Calculates the cost of a hire

by using the difference

between of days between the

starting hire date and the

ending hire date.

Reciept Type(Class) Using the key information

from the hire, this produces a

printable receipt.

HireDailyCost Type(Class) Calculate the cost of a hire

car based on user input, or

automatically calculated

based on the time difference

between a hire start date and

the return date.

Invoice Type(Class) Creates an invoice of the

start of a hire.

II. Functionality Analysis of System Operations

System Sequence Diagrams

System sequence diagrams have been created in order to display actors interactions with the

system. Each of the diagrams is based upon a use case identified previously.

Registering a New Customer

Removing a Customer

Adding Mechanic

Remove Mechanic

Hiring a Car

Hire Car Return

Recovering Car’s Hire History

Recovering Car’s Service History

Recovering Car Information

Record Mechanical Service

Adding a New Car

Removing a Car

System Operation Contracts

Contracts have been produced for the most important method’s that will be used in the system.

Each contract defines what the method is responsible for, any exceptions noticed when

performing the method, and the pre/post-conditions of the method being run.

Contract for SystemInitialisation

 Contract

Name: SystemInitialisation()

Responsibilities: Initialises and boots the system

Type: System

Cross References:

Note: System starts up

Exceptions:

Output:

Pre-conditions:

Post-conditions: ● System can now perform all intended operations.

Contract for AddCustomer

 Contract

Name: AddCustomer(CustName: text, CustAge: number,

CustTele: number, CustAddress: address)

Responsibilities: Enter a new Customer into the system with the required

details. Ensure all details are present and correct, then

register in the system. System ties a Unique ID to the new

Customer.

Type: System

Cross References: System Functions: R1.1

Use Case: Registering a New Customer

Note:

Exceptions: If input details are missing or incorrect, indicate error.

Output: A message is displayed confirming that the customer has

been added to the database and the saved information is

displayed on screen.

Pre-conditions: ● A Customer asks to register and provides their

details.

● Staff Member inputs the details into the system i.e.

name, age, address, contact number, etc.

Post-conditions: ● New Customer saved in the database.

● A message is displayed confirming customer has

been added to the database.

批注 [ZL4]: Not a system state

Contract for RemoveCustomer

 Contract

Name: RemoveCustomer(CustomerID: number)

Responsibilities: Removes a selected customer from the system via their

customer ID.

Type: System

Cross References: System Functions: R1.10, R2.4

Use Case: Removing a Customer

Note:

Exceptions: If chosen Customer ID does not exist on the system, indicate

error.

Output: A message is displayed confirming that the customer has been

removed and data has been deleted from the database.

Pre-conditions: ● The Customer asks to be removed from the system.

● The Staff Member access the customer file and request

that the customer is deleted from the system.

Post-conditions: ● A message is displayed confirming that the customer

has been removed from the system.

Contract for AddMechanic

 Contract

Name: AddMechanic(MechanicName: string, MechanicAge: int,

MechanicAddress: string, DriverLicense: int)

Responsibilities: Adds a new mechanic and stores their system.

Type: System

Cross References: System Functions: R4.1

Use Case: Addings a new mechanic

Note:

Exceptions: If input details are missing or incorrect, indicate error.

Output: A message is displayed confirming that the mechanic has been

added to the database and the saved information is displayed

on the screen.

Pre-conditions: ● A mechanic provides their details for registration.

● Details are input by a staff member.

Post-conditions: ● New mechanic saved in database.

● A message is displayed confirming the mechanic was

added.

Contract for RemoveMechanic

 Contract

Name: RemoveMechanic(MechID: int)

Responsibilities: Removes a selected mechanic from the system via their

mechanic ID.

Type: System

Cross References: System Functions: R4.1

Use Case: Removing a mechanic

Note:

Exceptions: The ID supplied for the mechanic doesn’t exist in the system.

Output: A message is displayed confirming that the mechanic has been

removed from the database.

Pre-conditions: ● The mechanic asks to be removed from the system.

● Staff accesses the system and requests that the

mechanic is deleted.

Post-conditions: ● A message is displayed confirming that the mechanic

has been removed from the system.

Contract for StartHire

 Contract

Name: StartHire(DriverLicense: int, StartDate: date, StartMileage: int,

ExpectedReturnDate: date)

Responsibilities: Records the information of a car hire onto the system.

Type: System

Cross References: System Functions: R1.5

Use Case: Hiring a car

Note:

Exceptions:

Output:

Pre-conditions: ● A customer requests to hire a car.

● A staff member accesses the system and initiates the

car hire.

Post-conditions: ● The information of the car hire is saved onto the system.

Contract for ReturnHire

 Contract

Name: ReturnHire(HireID: int, ReturnDate: date, NewMileage: int)

Responsibilities: Records the return of a hire car and updates it’s mileage.

Type:

Cross References: System Functions: R1.11

Use Case: Hire car return

Note:

Exceptions: The ID supplied for the hire ID does not exist in the system.

Output:

Pre-conditions: ● A car has been hired and the hire was registered on the

system.

● The customer returns the hire.

● A member of staff initiates the return hire method.

Post-conditions: ● The mileage of the car is updated.

● The car is available to be hired again.

Contract for RecordService

 Contract

Name: RecordServive(ServiceDate: date, ServiveType: string,

ServivceNote:string)

Responsibilities: Recording a service performed by a mechanic on a car in the

system.

Type: System

Cross References: System Functions: R3.5, R4.4

Use Case: Record Mechanical Service

Note:

Exceptions:

Output:

Pre-conditions: ● A car and the mechanic must be registered in the

system.

● A service must be completed on the car.

Post-conditions: ● The details of the service are recorded on the system.

Contract for AddCar

 Contract

Name: AddCar(CarRegNum: string, CarMake: string, CarModel: string,

EngineCapacity: string , HireClass: int, Mileage: int)

Responsibilities: Records and saves the details of a new hire car onto the

system.

Type: System

Cross References: System Functions: R3.1

Use Case: Addings a new car

Note:

Exceptions:

Output: A confirmation message is displayed on the screen to show the

car has been added to the system.

Pre-conditions: ● A member of staff must have the details required for the

car.

Post-conditions: ● The car is saved on the system.

Contract for RemoveCar

 Contract

Name: RemoveCar(CarRegNum: string)

Responsibilities: Removes the information stored on a hire car from the system.

Type: System

Cross References: System Functions: R4.5

Use Case: Removing a car

Note:

Exceptions: Car registration number entered does not exist on the system.

Output:

Pre-conditions: ● The car must be registered on the system before it can

be removed.

● A member of staff must request the car be removed.

Post-conditions: ● The car is removed from the system.

Contract for ShowHireHistory

 Contract

Name: ShowHireHistory(CarRegNum)

Responsibilities: Display the Hire History of a car based on its registration number

Type: System

Cross References: System Functions: R3.2

Use Case: Recovering Car’s Hire History

Note:

Exceptions: If selected car has no hire history, display error.

Output:

Pre-conditions: ● Car must have been hired previously.

● Registration number must be in the system.

Post-conditions: ● Hire History displayed on screen.

Contract for ShowServiceHistory

 Contract

Name: ShowServiceHistory(CarRegNum)

Responsibilities: Display the Service History of a car based on its registration

number.

Type: System

Cross References: System Functions: R3.2

Use Case: Recovering Car’s Service History

Note:

Exceptions: If selected car has no service history, display error.

Output:

Pre-conditions: ● Car must have been hired previously.

● Registration number must be in the system.

Post-conditions: ● Service History displayed on screen.

Contract for ShowCarInfo

 Contract

Name: ShowCarInfo(CarRegNum)

Responsibilities: Display the general information of a car based on its registration

number.

Type: System

Cross References: System Functions: R3.1

Use Case: Recovering the Information of a Hire Car

Note:

Exceptions: If registration number is invalid, display error.

Output:

Pre-conditions: ● Registration number must be in the system.

Post-conditions: ● Car information displayed on screen.

批注 [ZL5]: Misunderstanding of preconditions

III. Use Case Design

Object Sequence Diagrams

Object sequence diagrams have been created based upon the use cases identified. These

diagrams show how objects in the conceptual class model interact with each other.

Registering a New Customer

BvisSys acts as the Creator Pattern for this example as contains the initialising data that will be

passed to Customer to create an instance of it.

Customer is the main expert patterns for the use case, as Customer is responsible for knowing

the customer details as attributes, e.g Customer name, age, telephone number.

批注 [ZL6]: 1.1 should be creat()

Removing a Customer

Customer is the main expert patterns for the use case, as Customer is responsible for knowing

which ID related to which set of details of a Car Object.

Adding Mechanic

BvisSys acts as the Creator Pattern for this example as it contains the initialising data that will

be passed to Mechanic to create a instance of it.

Remove Mechanic

BvisSys acts as the Creator Pattern for this sequence because it contains the initialising data

that will be passed to create an instance of it.

Mechanic acts as an expert pattern that is responsible with knowing the instance of various

mechanics, aswell as which ID to assign to which mechanic.

Hiring a Car

Creator Pattern:

BvisSys class is the class that has the initialising data that will be passed to the Hire Class when

it creates a new instance of a hire class, thus the responsibility of the creation for a new car hire

should fall to the responsibility of class System.

Expert Patterns:

The Hire class stores some of the relevant data for the hire use case, such as Hire id and

drivers license, and also determines where the information about the hire, such as where to

send the information about the start of the hire date and mileage. Hence the Hire Class should

be responsible with call information of car info from CarFleet and also for sending information to

the invoice class.

Controller Pattern:

Hire has the responsibility of controller as it is responsible for direct where the information is

gathered from I.e the hire car info from the Car class, and it is also responsible for deciding

where the information is meant to be assigned to, I,e the date of hire and the original mileage of

the car assign with the hirestart class for example.

Cohesion:

Cohesion is reduced though the separation of a the hire task into separate classes. For example

the task of keeping the information of the start date and the mileage of the start of the hire is

kept within the HireStart class, and the task of printing the invoice i kept to the task of the

invoice class.

Hire Car Return

Creator pattern:

Hire class acts as a creator pattern for the HireReturn as the class contains the data used to

initialize instance of the HireReturn, and is primary one of its main associates to the rest of the

system.

Expert Pattern:

HireReturn and HireStart are expert pattern type classes as they are both responsible for storing

the the dates of Hire instance, as well as the mileage that the hire begins with and ends with

respectively. They are responsible for deciding where the information is meant to go. HireCost is

also an expert pattern as it not only is it responsible for storing the two dates, its also

responsible for working out the cost of a hire based on the difference in days between the two

dates times the cost of its hire class.

Controller Pattern:

Hire has the responsibility of controller as it is responsible for direct where the information is

sent in during the hire, such as the return date to the HireReturn Class for example and the

where the new mileage value should be sent.

High cohesion:
Cohesion is reduced though the separation of a the hire task into separate classes. For example

the task of keeping the information of the start date and the mileage of the start of the hire is

kept within the HireStart class, and the task of printing the invoice i kept to the task of the

invoice class.

Recovering Car’s Hire History

CarFleet knows where the CarHireRecords related to the Car registration number is stored as it

has associations with Car, which in turn knows where to link the instances of CarHireRecord to,

linking it a example to a expert pattern. Thus, CarFleet is responsible with showing the the hire

history of a car.

Recovering Car’s Service History

CarFleet knows where the service details related to the Car registration number is stored as it

has associations with Car, which in turn knows which car registration number is link to which set

of records. By this fact, CarFleet holds the responsibility of a expert pattern, thus CarFleet is

responsible with showing the the hire history of a car.

Recovering Car Information

CarFleet knows where the details related Car registration number is stored as it links to the

instances of cars that Car store, which intern knows where to link the instances of

CarHireRecord to, linking it a example to a expert pattern. Thus, CarFleet is responsible with

showing the the hire history of a car.

Record Mechanical Service

CarService stores information of the instances of a car services it receives from the BvisSys, an

ability that’s important for a expert pattern with the responsibility to store service records.

Adding a New Car

BvisSys is the first class that contains the initializing data that is passed to class Customer to

create a Customer Object. This indicates that BvisSys, by definition of the creator pattern, is

responsible for creating new instances of Customer.

Removing a Car

BvisSys carries the main information that is needed to determine which instance of car to

remove from the system, give that is received the registration number of car itself. This indicates

that BvisSys feature of a expert pattern associated with

Design Class Diagram

A design class diagram has been produced for the system, whilst this is similar to the

conceptual class diagram, it contains the methods that are used to allow the system to operate

across the different objects.

Glossary terms

Name Meaning

BvisSys The main interface point to contact other concepts and

use cases.

NewCustomer() Calls for a new instance of a Customer.

RemoveCustomer() Removes an instance of a Customer

AddMechanic() Add an instance of a Mechanic

RemoveMehanic() remove an instance of a mechanic

AddCar() calls for a new instance of a car

RemoveCar() Removes an instance of a car

StartHire() Create a new instance of a hire

ReturnHire() Update the hire of the hire return

ShowHireHistory() show the complete hire history of a car.

ShowServiceHistory() show the complete service history of a specific.

RecordService() Record a service report for a certain car.

Customer Storing customer details and information.

Customer.CustomerName:string Name of the customer.

Customer.CustomerAge:Number The age of the customer.

Customer.CustomerTele:Number Telephone number for the customer.

Customer.Address:address The house number, street name and postcode of the

customer.

Mechanic Storing the details of a new mechanic.

Mechanic.MechanicName:string The name of the mechanic.

Mechanic.MechanicAge:Number The age of the mechanic.

Mechanic.Address:address The address of the mechanic.

Car Creates an instance of a new car and stores the

information.

Car.CarRegNum:string Car registration number.

Car.CarMake:string Car Make, i.e. Company that makes the car.

Car.CarModel:string Model name of the car.

Car.EngineCapacity:string The engine capacity of the car.

Car.HireClass:number The hire class number of a car.

Car.Mileage:number The current mileage value of a car.

CarService Used to create an instance of a service report made by

a Mechanic.

CarService.ServiceDate:date Storing the date of the service in question.

CarService.ServiceType:String The type of service being made (Minor/Major).

CarServiceRecord Stores every new instance of a car service and used to

call upon a list of new instances.

CarHireRecord Stores every new instance of a car hire for a car.

Hire Creates an instance of a hire process.

Hire:DiverLicense.DiverLicense Storing the Divers License.

HireStart Creates an instance of starting process for a hire class.

HireStart.HireDate:Date Stores the start date of a Hire process.

HireStart.OrginalMileage:number Stores the original mileage record in hire process.

HireStart.Date.ExpReturnDate Stores the date of the expected return date of a hire.

HireReturn Contains the information of the return details of a hire

process.

HireReturn.ReturnHireDate:Date The date of the car being returned.

HireReturn.Mileage.Number The new mileage of the return car in a hire process.

HireCost Calculates the cost of a hire by using the difference

between of days between the starting hire date and the

ending hire date.

Reciept Using the key information from the hire, this produces a

printable receipt.

HireDailyCost Calculate the cost of a hire car based on user input, or

automatically calculated based on the time difference

between a hire start date and the return date.

Invoice Creates an invoice of the start of a hire.

Appendix

Meetings

Group Meeting 1 – Introduction

Initial Ideas

Date: 10th March 2015

Time: 3:00PM

Room: MP252

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Introduce members to the projects

The project manager and group members are introduced to one another and are conducting the

following meeting to talk about the project that has been set forward.

The project has been identified by the group as a hiring system for a car hire company in UML

(Unified Modelling Language).

It was decided between all members that group members were to be delegated tasks by the

team leader (or volunteered to do tasks).

The deadline for the project will be 21st April 2015 and was discussed during the meeting to

acknowledge any future time constraints.

3. Requirements of Project

The requirements for the project are that they should have all the functionality described in the

assignment brief, this includes tasks such as registering a new customer, recording when

particular cars have been hired, returned and cost of those cars based on those two factors. It

should also display details of the car hired and log a completed hire and the user should be able

to remove customers and cars from the database. This and many more functions of the project

have been discussed during this meeting but none have been delegated as of yet. Plans to do

that were discussed and were agreed to be discussed in the next meeting. CK suggested that

we all research more on UML using materials such as the software design lecture slides so that

we are all comfortable with the concepts by the next meeting.

4. Outline content

The content of the project will be based on UML and will implement the uses of use cases and

functions. The group also discussed the assignment brief requirements and that it requires

write-up of a minimum of 3000 words as well as the use of use case diagrams.

5. Purpose of the project

The purpose of the project has been identified as a base for the design of software that any

potential software developer could pick up and use to follow the design aspects for this software.

This would include how the software handles, stores and transfers data as well as how the

system will operate with certain actors.

6. Project layout

It was discussed that the work would be laid out according to the assignment brief in that it

would be laid out in such a way that it would have clearly defined sections each with descriptive

introductions and explanations in regards to tables, UML/class/object diagrams e.t.c.

CK had also suggested that we work on this project through the use of google docs on google

drive. This way all the group members can work on one document simultaneously from their

own homes and can see the changes that others are making in real-time. This was the agreed

on as the method of doing/laying out the work.

7. Any other business

None.

8. Date and time of next meeting

17th March 2015

3:00 PM

Group Meeting 2 – Introduction

Delegation of tasks

Date: 17th March 2015

Time: 3:00PM

Room: MP252

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Minutes from last meeting

Minutes from last meeting were shown to the group and have been confirmed to be accurate.

3. Present updated group progress

The tasks set from the last meeting were that the group members should research more on

UML and case/object diagrams as well as use cases and then come back to the second

meeting for the delegation of tasks. All group members have said to have done research and

have said to have a clear understanding of the tasks needed for the project.

4. Matters arising

After discussion on matters that could be arising it seemed that a lot of the research done by the

group were mostly just from the lecture slides from the module Software Design and not much

external research was done. Those that did do external research did not do much, mostly due to

lack of content online or “vague” definitions of certain terms. It is therefore imperative that any

group member that is not fully clear on any definition needs to make sure that they get that done

or at least get help from another member that does understand more.

5. Discussing improvements to be made

No improvements were required to be made as the write-up has not officially started. There is a

room for improvement in which it was previously stated that some more external research will

need to be done in order for members of the group to get a clear understanding of some of the

definitions of UML such as “Patterns” and “Contracts”. CK has offered to help those struggling

with some terms by explaining the terms to them. This was done so that the group could quickly

move onto starting the write-up.

6. Status of the Project

The project is now at a point where all group members have an understanding of the majority (if

not all) of the terms of UML as well as use cases/diagrams. During the meeting it was advised

by CK that the group should start working on tasks that will be delegated to them to which all the

group members agreed on. The tasks CK had given out were that of 2 use cases per group

member (adittionally TH would help improve on use cases done by other members). After this, it

was suggested by CK that by the next meeting the group members doing use cases should at

least have the use cases done and/or the expanded use cases also.

7. Any other business

None.

8. Date and time of next meeting

24th March 2015

3:00 PM

Group Meeting 3 – Progress update

Date: 24th March 2015

Time: 3:00PM

Room: MP252

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Minutes from last meeting

Minutes from last meeting were shown to the group and have been confirmed to be accurate.

3. Present updated group progress

The tasks set from the last meeting were that the group members and the Project Manager

should have at least done their use cases with some diagrams of systems operations of those

use cases if applicable. CK had offered help to the group members who need it with definitions

of some words or concepts of some use cases. BH, MH, JF, CK and AL have all done their use

cases and put them into the coursework draft with AL also having stated the System operations

diagram for his use case. TH has completed a full write-up of the introduction and has done a

majority of the System Function tables as well as corrected or improved other members use

cases.

4. Matters arising

After discussion on matters that could be arising it was concluded by all group members that no

matters were in need of discussion. However, CK had mentioned that there were two more use

cases to be done and as such asked BH and MH to do one extra use case each in addition to

their own.

5. Discussing improvements to be made

CK had said that all the use cases were fine but requested that they were laid out as they were

shown on the lecture slides. This was due to the fact that the group members just laid out the

use cases as bullet points. CK also pointed out that that each use case requires and extended

use case, which some members did not include. CK then suggested that those who have not

done the extended use cases should do so as soon as possible and also start doing the System

operations diagrams for each use case. TH was told by CK to finish off doing the rest of the

functions table and start doing a conceptual class diagram based on his identifying concepts

whilst CK stated he will be doing his systems operations as well as the use case diagram.

6. Status of the Project

The project is now at a point where the write-up has started and is progressing very well. CK

had then stated that we had all made good progress and that we can move onto doing our

individual system operations diagrams as well as other tasks such as descriptions of system

operations diagrams. The project is progressing well too and if it keeps up then as CK had

stated, this could be done or close to done within another two meetings.

CK also stated that due to next week being the Easter holidays, he had suggested that the next

meeting should be the week after next. All group members agreed to this and stated they had

no problem with this.

7. Any other business

None.

8. Date and time of next meeting

7st April 2015

12:00 PM

Group Meeting 4 – Progress update

Date: 7th April 2015

Time: 12:00PM

Room: Millennium Point Common Room

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Minutes from last meeting

Minutes from last meeting were shown to the group and have been confirmed to be accurate.

3. Present updated group progress

The tasks set from the last meeting were that the group members and the Project Manager

should have at least done their system operations diagrams and extended use cases if still

required to be done. CK has stated that he has done the systems operations diagram as well as

his own use case. BH, MH, JF, CK and AL have all done their use cases and extended use

cases and have put them into the coursework draft. TH has further improved upon use cases as

well as made suggestions for system operation diagrams as well as finishing the functions

tables whilst also doing the conceptual class diagram. BH and MH have also done their

additional use cases with extended use cases and only had the Sequence and Object diagrams

left to do.

4. Matters arising

After discussion on matters that could be arising it was clear to CK that we were running out of

time and needed to increase our progress speed as the deadline was fast approaching. CK

stated that from the last meeting to this one there has not been as much progress on the work

as compared to the other previous progress meetings and that if the group want to meet the

deadline then they would be required to increase the amount of work done by the next meeting.

The group members all agreed that this was a matter that needed to be resolved.

5. Discussing improvements to be made

CK had expressed that there were not many improvements to be made apart from the extended

use cases which were not laid out properly, like the use cases in the previous meetings. This

was due to the fact that the group members just laid out the use cases as bullet points.

6. Status of the Project

The project is now at a point where the write-up is progressing well although with the deadline

fast approaching the group needs to increase the speed of their workload. However it was also

pointed out that if all the contracts were to be done by the next meeting then the majority of the

work should already be done leaving little left to do. CK pointed out that each use case requires

a contracts as well as an extended use case (which has already been fulfilled by each group

member) TH volunteered to do the use of patterns. All group members acknowledged this and

have agreed on what they should do for next meeting.

7. Any other business

None.

8. Date and time of next meeting

17th April 2015

12:00 PM

Group Meeting 5 – Progress update

Date: 17th April 2015

Time: 12:00PM

Room: Millennium Point Common Room

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Minutes from last meeting

Minutes from last meeting were shown to the group and have been confirmed to be accurate.

3. Present updated group progress

The tasks set from the last meeting were that the group members and the Project Manager

should have at least done their contracts for the use cases and TH should have done the use of

patterns. During the meeting it was confirmed that all the tasks that were set out for the

members were fulfilled.

4. Matters arising

After discussion on matters that could be arising it was clear to CK that we were running out of

time only we were now on schedule to complete the work due to the group catching up with the

workload. CK has stated that the group should still keep progressing at the current speed and

have the project finished by the next and final meeting if they are to finish the project before the

deadline without doing things at the last minute.

5. Discussing improvements to be made

The group acknowledged there were not many improvements to be made although CK still

expressed concerns about the layout of the work overall. He expresses this due to the fact that

the group will be marked on layout. The group agreed and BH had stated that the reason the

layout has not yet been adjusted it due to the fact that the group have just been concentrating

solely on getting content into the project. CK agreed and stated that the content should be done

first and that the layout will be done once the content is finished.

6. Status of the Project

The project is now at a point where the write-up is nearing a close and the group needs to finish

the content and possibly amend the layout by the next meeting in order to meet the deadline.

7. Any other business

None.

8. Date and time of next meeting

20th April 2015

12:00 PM

Group Meeting 6 – Conclusion

Date: 20th April 2015

Time: 2:00PM

Room: MP

Project Manager: Ciaran Keogh (CK)

Group Members: Bilal Husain (BH), Matthew Hinton (MH), James Frith (JF), Thomas

Hulme (TH), Abdul Lefsay (AL)

Minutes:

1. Apologies for absences

None.

2. Minutes from last meeting

Minutes from last meeting were shown to the group and have been confirmed to be accurate.

3. Present updated group progress

The tasks set from the last meeting were that the group members and the Project Manager

should have finished all their tasks and should be bringing the project to a close. The layout of

the project should also be done and the work should be ready for submission. The group work

has all been done and the layout has been amended. CK and the group are happy with the work.

The work was also presented to the group one last time and BH made the group write their

names on the cover letter. Overall CK and the group were very happy with the work they did

and felt that they all presented the work well.

4. Status of the Project

The project is now finished and will be submitted. All the group members are happy with the

project and are therefore happy to be submitted. CK will be submitting it tomorrow when BH has

scanned the cover sheet and sends it to CK.

5. Any other business

None.

6. Date and time of next meeting

None.

Work Allocation

In the following table it is shown that each use case task was assigned to each group member.

When a group member is assigned a use case this means that the member has completed all

the sequence and object diagrams for that use case as well as any other contracts for that use

case.

Each member was then able to contribute the use case towards diagrams such as the Design

Class diagram and Conceptual Class diagram.

Additionally to Note, Thomas Hulme has done the introduction for the project as well as the

function tables whilst Ciaran Keogh has identified the use of patterns in Object Sequence

diagrams.

Task Name Assigned Team

Members

Completed

By

Date of

Completion

Registering a new

customer

Abdul Abdul 1st April

Removing a customer Abdul Abdul 19th April

Recording the Hire of a

Car

Ciaran Ciaran 2nd April

Recording the return of the

Car

Ciaran Ciaran 17th April

Recovering information of

hire car

James James 19th April

Record a Car service James James 19th April

Adding a new Mechanic Matthew Matthew 13th April

Removing a Mechanic Matthew Matthew 13th April

Adding a new Car to the

fleet

Bilal Bilal 5th April

Removing a Car from fleet Bilal Bilal 8th April

Recovering a Car’s service

history

Thomas Thomas 7th April

Recovering a Car’s Hire

history

Thomas Thomas 13th April

