
Page 1 of 51

Faculty of Computing,
Engineering and the Built

Environment

Undergraduate Programme
Academic Year 2014‐2015

Coursework: Team Project

Module: CMP2515 Software Design UG2

School: Computing, Telecommunication and Networks

Module Co-ordinator: Professor Zhiming Liu

Setup Date: 20/02/2015

Submission Date: 21/04/2015

Team Number: T15

Team Leader: Lucy Shone

Team Members: Bradley Smith, Aleksey Ziarniecki, Imaad Yasin,

 Jamie Uddin, Mohammed Yaseen, Gurpreet Singh

Instruction to Students:

The final report to submit should contain this page as the cover page,
with the above details of the team filled in.

As part of project management, each team should have a weekly
meeting. A weekly project diary should be maintained to record the
attendance of the meetings by team members, together with brief
notes about the weekly project tasks allocations and how well
individual team members meet the deadlines of their project tasks.

The final project report should include the weekly dairy in the part of
the project management.

Page 2 of 51

Contents

I. The initial requirements and understanding

1) Nature of the project and the company 3

2) System functions 5

3) Essential use cases 7

4) Expanded use cases 8

5) Use case diagrams 14

6) Conceptual class diagram 26

II. Analysis of functionality of system operations

1) System operations and system sequence diagrams 28

2) System operation contracts 35

III. Use case design and system design

1) Collaboration diagrams or object sequence diagrams 42

2) Use of patterns 46

3) Design class diagrams 47

Project Management

1) Meeting attendance 49

2) Task management and completion 50

Glossary 51

Page 3 of 51

I. Initial requirements understanding

1) Discuss the nature of the Bvis Car Hire Company. Why is an object-oriented development
applicable to this company? Refer to chapter 3 of the course notes. Elaborate the problem
description as necessary to support your analysis.

The nature of the company is to supply a car hire service to its customers based on a daily hire
rate. It currently used a paper based manual system, however this type of record system puts the
company at a higher risk of lost paperwork and records. A computer system would help store all
of this information digitally, therefore the company would be at a lower risk of losing records and
paperwork, and also potentially being able to retrieve lost data.

For this system an object-oriented development will be used. Object oriented is a style of
programming that uses objects. Objects are used to store data, such as number data (integers)
and word data (strings). This would be applicable to this company because of the type of data
being stored. Figure 1.1 shows the process outline of user input when using object-oriented
development:

Five attributes of a complex system:

1. ‘Complexity takes the form of a hierarchy, whereby a complex system is composed of
inter- related subsystems that have in turn their own subsystems, an so on, until some
lowest level of elementary components is reached.’

This enables a company to be split into multiple departments. The departments will then contain
‘sub-departments’ and they can view data and information that is specific to that department, as
opposed to having an overload of data and information. For example: the company could contain
a department or section of the system that is called ‘employees’, this section will then include
different sub-sections, such as: ‘management’ or ‘administration’ for instance.

2. ‘The choice of what components in a system are primitive is relatively arbitrary and is
largely up to the discretion of the observer of the system.’

This enables a company to ensure different departments only have access to stuff they need.
The person in charge of the system is the one who decides who has access to what, so an

Prompt user for make
of car

Dependent on what
models are stored
within the attribute
make, the system

then prompts the
user for a model that
is specific to the
make

User is then prompted
to input engine
capacity that has
default values and is
not dependent upon
the make or model of
the car.

The information that
has been inputted by
the user is then stored
onto the system.

Figure 1.1

批注 [ZL1]: Not only a style of programming

Page 4 of 51

example of this would be the sales assistant that deals with customers does not need to have
access to information regarding the payment of all staff. So this attribute enables the limitation of
information to those who do not need it.

3. ‘Intracomponent linkages are generally stronger than intercomponent linkages. This fact
has the effect to separating the high-frequency dynamics of the components - involving
the internal structure of the components - from the low-frequency dynamics - involving
interaction among components.’

All information in a system is used by other departments meaning that no duplicate data needs to be added,
an example of this is all departments that deal with the sale process and end product need to know the
customerID. This means that this information must be shared across all sections and is no unique to a
certain department.

4. ‘Hierarchic systems are usually composed of only a few different kinds of subsystems in
various combinations and arrangements.’

An example of this would be when a customer is returning a hired car, instead of having to enter
all of the details again only the new details would be needed like the new mileage of the car. This
then results in much less duplicate data.

5. ‘A complex system that works is invariably found to have evolved from a simple system
that worked. A complex system designed from scratch never works and cannot be
patched up to make it work. You have to start over, beginning with a working simple
system.’

Every complex system must start from somewhere, each system must have a starting backbone,
which can be changed and eventually made into a complex system. An example of this is when
new programs are made the developers have a clear plan of what the system must include and
start with all the basics to make the program work and easily upgradable showing the fact that a
complex system evolves from a simple system that works.

(Please continue to next page…)
2) System functions according to the guidelines in section 4.1 of the course notes.

Page 5 of 51

Basic Functions:

Table 1.1 shows the basic functions of the system. These have been grouped as ‘basic’ because
they are the functions the system should be able to do at a minimum based on the problem
description.

Table 1.1

Data removal functions:

Table 1.2 shows other functions that have been placed in groups other than ‘basic’. These
functions have been grouped as ‘data removal’. All of the following functions remove data that will
be stored in the computer system, however none of them affect the ‘basic’ functions, therefore
they are frill functions.

Ref#

Function

Category

1.1

Register a new customer onto the system

Hidden

1.2

Record that a particular car has been hired

Evident

1.3

Record that a particular car has been returned

Evident

1.4

Calculate the cost based on the daily hire rate

Evident

1.5

Display the appropriate details, and print out a receipt

Evident

1.6

Log a completed hire

Hidden

1.7

Record a service for a particular car, together with the date of
the service, the type of service and the name of the mechanic
responsible for the service

Evident

1.8

Add a new car to the fleet

Evident

1.9

Add a mechanic who has joined the company

Hidden

2.1

Remove a customer

Hidden

2.2

Delete a car that is no longer in the hire fleet

Hidden

Page 6 of 51

Table 1.2

Data extraction functions:

Table 1.3 shows functions that aren’t categorised as ‘basic’ or ‘data removal’. The remaining
functions have been grouped as ‘data extraction’ and rely on the basic functions to display data
when required by the actor. They don’t however affect the basic functions, and therefore, are frill
functions.

Table 1.3

(Please continue to next page…)

2.3 Remove the details of a mechanic who has left the company Hidden

3.1

Determine if a particular car is due for a particular service

Evident

3.2

List the information (history) about all hires for a specified car

Evident

3.3

List the information (history) about all services that a specified
car has had

Evident

Page 7 of 51

3) Identify the ESSENTIAL use cases.

Essential use cases highlighted in bold.

1. Register a new customer.
2. Record that a particular car has been hired.
3. Record that a particular car has been returned.
4. Calculate the cost based on the daily hire rate.
5. Display the appropriate details, and print out a receipt.
6. Log a completed hire.
7. Record a service for a particular car, together with the date of the service, the type of
the service, and the name of the mechanic responsible.

8. Remove a customer.
9. Add a new car to the fleet.
10. Delete a car that is no longer in the hire fleet.
11. Add a mechanic who has joined the company.
12. Remove the details of a mechanic who has left the company.
13. Determine if a particular car is due for a particular service.
14. List the information (history) about all hires for a specified car.
15. List the information (history) about all services that a specified car has had.

After reading the problem description for Bvis Car Hire Company, specific use cases were
chosen that would be essential to the company. Each individual use case plays a critical part
within the business and they are used to describe the possible sequences of an event.

10 uses cases were selected out of a total of 15. The 10 that were chosen were described to be
the main and important events that will occur in the car hire company.

(Please continue on to next page…)

Page 8 of 51

4) Write an expanded version for each of these use cases.

Firstly identifying the use cases, from these, select a few use cases that we think are crucial to
the use of the system based on the problem statement.

Register a new customer

Use case: Register a new customer

Actors: Customer (initiator) and the sale assistant

Purpose: To identify that a new customer has joined the company

Overview: The customer wants to register as a new customer. The sale assistance asks the
customers for their details such as name, telephone number and address on a form. On
completion after the customer has filled his/her details the customer leaves.

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

1. This use case begins when a customer
wants to register with the company.
2. The actor provides the information required
to register with the sales assistant: name,
telephone number, and address.

 3. Information is saved onto the system and the
customer is now registered with the company.

Alternative courses of action:

- 2: Invalid data entry input. Prompts sales assistant to re enter information. Indicate error.
- 3: System failed to save information. Prompts sales assistant to re enter customer

information.

Record that a particular car has been hired

Use case: Record that a particular car has been hired

Actors: Customer (initiator) and the sale assistance

Purpose: To identify that a car has been hired

Overview: The customer wants to hire a car. He/she would have to provide information such as
their name, address, telephone number and driving license before they can hire the car. The
beginning and end of the hire are recorded as well. This is to identify what car has been hired.
Details such as the registration number (unique), make, model, engine capacity, hire class (1 – 6)
and the date of the registration.

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

1. This use case begins when a customer
wants to hire a car.
2. Information of the customer is provided.

 3. System checks to see if the customer is
registered on the system.

批注 [ZL2]: Simplify

Page 9 of 51

3. Customer states make, model and engine
capacity of the car that they want to hire and
the date of hire.

 5. System checks to see if the car is available
for hire on that specific date.

6. Sales assistant completes hire enquiry.

 6. System registers the hire of the car onto the
system.

Alternative courses of action:

- 3: Customer is not registered and has to be registered before hiring a car.
- 5: Date of hire or car is unavailable. Prompts the sales assistant to enquire a different

date or model of car that is available.

Record that a particular car has been returned

Use case: Record that a particular car has been returned

Actors: Customer (initiator) and the sale assistance

Purpose: To identify that the car has been returned after it has been hired

Overview: The customer wants return the car they have hired. When the customer comes to
return the car the sales assistance checks to see if the same car is being returned.

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

1. Use case begins when a customer returns
with the hire car.
2. Sales assistant records mileage and date of
return for a particular car.
3. Sales assistant completes hire agreement
file.

 4. System updates the hire agreement file.

Alternative courses of action:

- 2: Incorrect data input. Indicate error.

Calculate the cost based on the daily hire rate

Use case: Calculate the cost based on the daily hire rate.

Actors: Sales assistant (Initiator)

Purpose: capture a specific hired car and its total cost based on a daily rate so that a receipt can
be produced.

Overview: The car details with the time hired are pulled up and calculated so that the total cost of
the hire has been worked out. A receipt is then produced.

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

批注 [ZL3]: Could be more informative

批注 [ZL4]: Simplify the name

Page 10 of 51

1. Car is returned after hire period.
2. Sales assistant will then enter the return
date.

 3. System uses the return date to calculate a
cost using: number of days of hire * daily hire
rate.
4. System displays a final cost that the
customer will need to pay.

Alternative courses of action:

- 2: Invalid date is inputted. Indicate error.
- 3: Invalid cost produced. Indicate error.

Display the appropriate details, and print out a receipt

Use case: Display the appropriate details, and print out a receipt.

Actors: Sales Assistant (initiator), Costumer

Purpose: Display the cost and print out a receipt

Overview: A customer’s cost for hiring a car based on the daily hire rate is displayed.
The cashier prints out a receipt for the costumer. Once completed the costumer leaves with a
receipt.

Typical course of events

ACTORS ACTION SYSTEM RESPONSE

1. The use case begins with the sales assistant
retrieving specific details of a hire off the
system.

 2. The system retrieves the details that are
stored and displays them to the sales assistant.

3. If the customer agrees to the price, then the
sales assistant will print out the receipt with the
hire details and cost on.

 4. The system then prints out a receipt.

5. Customer leaves with the receipt.

Log a completed hire

Use case: Log a completed hire.

Actors: Sales assistant (Initiator)

Purpose: A record of each completed hire with the correct information is kept.

Overview: A sales assistant keeps a record of the hire dates, customer’s details and the payment
due.

Typical course of events

ACTOR ACTIONS SYSTEM RESPONSE

1. The sales assistant will log into the system in
order to log a complete hire.

Page 11 of 51

 2. The details of that specific hire will be
displayed.

3. The sales assistant can amend these details
and add a return date and mileage to the file.
4. The sales assistant then saves the file.

 5. The system the updates the file.

Alternative courses of action:

- 1: Incorrect details input. Indicate error and prompt to re-enter user details.
- 2: No hire agreement file is located. Indicate error.

Determine if a particular car is due for a particular service

Use case: Determine if a particular car is due for a particular service.
Actors: Sales assistant (Initiator)
Purpose: Checking to see if a car needs servicing by a mechanic
Overview: A car is serviced depending on the miles it’s done and a record is kept

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

1. Sales assistant logs onto the system.
2. Uses the system to retrieve details and all
previous hires for a specific car.

 3. System reacts actor by searching its system
for the required car details.

4. Sales assistant checks current mileage for
the car.
5. If the mileage is at 6,000 the sales assistant
will book it in for a minor service.
6. If the mileage is at 12,000 the sales
assistant will book it in for a major service.
7. If it is under 6,000 or already been serviced,
then it doesn’t require service and the sales will
log off the system.

Record a service

Use Case: Record a service

Actors: Sales Assistant (initiator)

Purpose: To record a car service onto the system.

Overview: A car returns from a service. The sales assistant records the type of service, the
details of the service and the mechanic who performed the service onto the computer system.

Typical course of events

ACTOR ACTION SYSTEM RESPONSE

1. Use case begins when a car returns from a
minor or major service.
2. Sales assistant records the make, model
and
registration number.

Page 12 of 51

 3. System carries out a check to ensure the
car is registered onto the system already.

4. Sales assistant records the type of service
that has been performed on the car and the
mileage at the time of service.
5. Sales assistant records the date of the
service and the mechanic who performed the
service.
6. Sales assistant indicates to the system that
the record is completed.

 7. System logs the completed record.

Add a new car to the fleet

Use case: Add a new car to the fleet.

Actors: Sales assistant (initiator)

Purpose: Add a new car to company's system for customers to hire.

Overview: The sales assistant will add the details of the new car on the system such as
registration number, make, model, engine capacity and the hire class (1 - 6). A new car will be
added to the company's system.

Typical course of events

ACTOR ACTIONS SYSTEM RESPONSE

1. The use case beings with a sales assistant
prompting the system to add a new car

2. The sales assistant will input the details of
the car such as registration number, make,
model, engine capacity and the hire class
(1 - 6)

 3. The system will verify that all of the details
are correct.

 4. The system will save the details of the car.

Delete a car that is no longer in the hire fleet

Use case: Delete a car that is no longer in the hire fleet.

Actors: Sales assistant (initiator)

Purpose: Delete a particular car from the company's system.

Overview: The sales assistant will input the details of the car to be deleted. Once the system
displays the car the sales assistant will delete the car. The system will save that the car is no
longer on the system.

Typical course of events

ACTOR ACTIONS SYSTEM RESPONSE

1. The use case beings with a sales assistant
wanting to delete a car.

Page 13 of 51

2. The sales assistant will enter the details of
the car such as registration number, make,
model, engine capacity and the hire class
(1 - 6).

 3. The system will display a car that matches
the details of the data.

4. The sales assistant will then prompt the
system to delete the car.

 5.The system will save with the car being
deleted.

To write the expanded version for each of the use cases we had to begin with writing high level
use cases for each of the essential use cases that we choose. A high level use case would give
us an overall understanding of the process. Once we had done the high level use cases we
moved on to doing the expanded use cases which required us to analyse the high level use case
and then write the expanded use cases.

(Please continue to next page…)

批注 [ZL5]: Very good use case decriptions

Page 14 of 51

5) Use case diagrams that show the relationships between the actors and the use cases.

Use case diagram 1 – Record a hire and register and new customer.

Use case diagram 2 – Add a new car to the fleet.

批注 [ZL6]: Many of the use cases in the diagram are not
explained or described

Page 15 of 51

Use case diagram 3 – Deleting a car from the fleet

Use case diagram 3 – Recording a returned hire and calculating a cost.

Use case diagram 4 – Determine if a car is due for a service, and record a service.

Page 16 of 51

Discussion for choice of use cases

Recording a returned hire and calculating a cost
The relationship in this use case diagram involve the use cases ‘recording a returned hire’ and
‘calculating a cost’. These 2 uses cases have a relationship because calculating a cost is due
right after a car has been returned. The relationship between the uses cases and actors can
easily be shown on this diagram.

In this diagram the sales assistant is associated with 2 use cases, one of which is called ‘record a
returned hire’, this use case has an extension point of log a completed hire. ‘Return date’ and
‘mileage’ were included from this use case, which was extended from log a completed hire.

The second use case was ‘calculate hire cost ’, this extended from ‘’print receipt and had an
extension, which was also print receipt and includes ‘number of days hired’ and ‘daily hire rate’
Another extended use case from this point is ‘make payment’. This had an extension point of
‘receive receipt’, which included ‘payment by cash’ and an extended from ‘receive receipt’. The
‘make a payment’ use case is associated with the customer.

Add a new car to the fleet
For the use case add a new car to the fleet a use case diagram was created in visual paradigm to
show the relationships between the actor and the use case. An actor tool was used along with
the association tool to show the association between the use case add a new car to the fleet and
the actor. The use case diagram shows all the details that need to be included for add a new car
to the fleet that are date of registration, registration number, model, make, engine capacity and
hire class (1 - 6) that were added by using the include use case tool.

Delete a car that is no longer in the hire fleet
For the use case delete a car that is no longer in the hire fleet a use case diagram was created in
visual paradigm to show the relationships between the actor and the use case. An actor tool was
used along with the association tool to show the association between the use case delete a car
that is no longer in the hire fleet and the actor. The use case diagram shows all the details that
need to be included for deleting a car from the fleet which are date of registration, registration
number, model, make, engine capacity and hire class (1 - 6) that were added by using the
include use case tool.

Record a hire and register a new customer
While the use case diagram had to be created the relationship between the actor and the use
case had to be identified. When the process was completed the use case diagram could then be
created by using the different types of tools such as the actor, use case and association line.

When creating the use cases diagram there were two use cases which had to be involved.
‘Register a new customer’ and ‘Record a hire’ were the two use cases. The reason for this is
because the use cases have to rely in each other. This is because the customer has to be a
registered customer for them to hire a car.

The use case diagram for ‘Register a new customer’ is associated with an actor. When creating
the use case diagrams extend tools and include tools were used to create them. Extend tools
were used for ‘Register a new customer’ and ‘Sales assistance ask customer to provide
information’. Include tools were used for ‘Sales assistance asks for the customer name, address,
telephone number’ and ‘the system saves the new customer’.

The use diagram for ‘Record a hire’ is associated with an actor. When creating the use case
diagram include tools were used to create ‘The cars make, engine capacity, model, registration
number and hire class’ and ‘The customer’s name, address, telephone number and driving
licence’.

Page 17 of 51

Determine if a car is due for a service, and record a service
The 2 uses cases which have been combined are ‘determine if a car is due for a service’ and
‘record a service’. This is because one of these processes is carried out if the previous use case
is true, therefore this will show the relationship between the use cases and actors.

For the design the use case called ‘determine if service is due’ was created, which is associated
with the actor. Extension points of record a service, this use case was made, which include
‘minor service = 6000 miles’ and ‘major service 12000 miles or above’.

The use case ‘determine if a service is due’ was extended from another use case called ‘record a
service’. This use case also had extension points of log a service, which included ‘make and
model’, ‘registration number’, ‘date of service’, ‘name of mechanic’ and mileage of time of service’.

Another extended use case called ‘log a service’ is made, is extended to the use case ‘determine
if a service is due’.

(Please continue on to next page…)

Page 18 of 51

6) Using the use cases and problem description, create a conceptual class diagram showing the
classes, associations and attributes that you have identified. Give discussion to support your
identification.

Register a new customer

Symbol: Customer
Intention: a person who wants to become a registered customer
Extension: a customer with the name John Smith, Jane Doe etc.

Attributes: FirstName, Surname, Age, Address, Postcode, TelNo, CustID, DLNo

Symbol: Sales assistant
Intention: a person who registers the customer onto the system
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: RegisteredCust
Intention: process of registering a customer
Extension: sales assistant Alan Turner registered customer Jane Doe onto the system.

Attributes: DateOfReg, RegisteredBy

Record that a particular car has been hired

Symbol: Customer
Intention: the customer that wants to hire the car
Extension: a customer with the name John Smith, Jane Doe etc.

Attributes: FirstName, Surname, Age, Address, Postcode, TelNo, CustID, DLNo

Symbol: Sales assistant
Intention: a person who uses the system to record a hire
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Page 19 of 51

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: Cars
Intention: the car that is being hired by a customer
Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass

Symbol: HiredCar
Intention: the process of hiring a car.
Extension: a Volkswagen Polo that has been hired by Jane Doe.

Attributes: DateHired, LengthOfHire

Record that a particular car has been returned

Symbol: Customer
Intention: the customer who is returning the car
Extension: a customer with the name John Smith, Jane Doe etc.

Attributes: FirstName, Surname, Age, Address, Postcode, TelNo, CustID, DLNo

Symbol: Sales assistant
Intention: sales assistant that is recording the hire onto the system
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: Cars
Intention: the car that is being returned by a customer

Page 20 of 51

Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass

Symbol: ReturnedCar
Intention: the process of a customer returning a car
Extension: a customer with the name John Smith returned a Volkswagen Golf

Attributes: DateReturned, ExtraCharges

Calculate the cost based on a daily hire rate

Symbol: Sales assistant
Intention: sales assistant that is using the system to retrieve the hire cost
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: HireCost
Intention: the event of the system calculating the hire cost of a sale
Extension: hirecost1, hirecost2, hirecost3, etc.

Attributes: HirePayment, Days

Page 21 of 51

Display the appropriate details, and print out a receipt

Symbol: Sales assistant
Intention: sales assistant that will tell the system to print a receipt.
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID
Symbol: Customer
Intention: the customer that will receive the receipt with their details on.
Extension: a customer with the name John Smith, Jane Doe etc.

Attributes: FirstName, Surname, Age, Address, Postcode, TelNo, CustID

Symbol: PrintReceipt
Intention: event of printing a receipt
Extension: receiptno1, receiptno2, receiptno3.

Attributes: ReceiptNo, CustID,

Log a completed hire

Symbol: Sales assistant
Intention: sales assistant that will log the hire onto the system.
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: LogHire
Intention: the event of logging a hire onto the system
Extension: a sales assistant Alan Turner logged hire onto system.

Attributes: DateOfHire, DateReturned, HirePayment, CustID, EmployeeID

Page 22 of 51

Determine if a car is ready for a service

Symbol: Sales assistant
Intention: sales assistant that will log the hire onto the system.
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: CheckService
Intention: sales assistant will check the mileage to see if it needs a service.
Extension: service1, service2

Extension: minorService, majorService, ServiceType

Symbol: Cars
Intention: the car that is being returned by a customer
Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass, Mileage

Page 23 of 51

Record a service for a particular car, together with the date of the service, the type of the
service and the mechanic responsible for the service

Symbol: Sales assistant
Intention: sales assistant that will log the hire onto the system.
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: Cars
Intention: the car that is being recorded onto the system
Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, RegNo, HireClass

Symbol: Mechanic
Intention: the person who performs a service on a car
Extension: a mechanic with the name Roger James, Bill Allen.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID, GarageNo

Symbol: RecordService
Intention: the even of a service being recorded onto the system
Extension: A sales assistant Alan Turner recorded the service of the Volkswagen Golf onto the
system that was performed by Roger James.

Attributes: dateOfService, recordServiceType. mechanicName, recordMileage, make, model,
regNo

Page 24 of 51

Add a new car to the fleet

Symbol: Sales assistant
Intention: sales assistant that is adding a new car to the fleet
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: Car
Intention: the car that is being added into the fleet.
Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass

Symbol: NewCar
Intention: the event of adding a new car to the fleet.
Extension: a sales assistant with the name Mary Reynolds added the car Volkswagen Polo to the
fleet.

Attributes: DateAddedToFleet, Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo,
HireClass

Delete a car that is no longer in the hire fleet

Symbol: Sales assistant
Intention: sales assistant that is adding a new car to the fleet
Extension: a sales assistant with the name Alan Turner, Mary Reynolds.

Attributes: FirstName, Surname, Age, JobRole, EmployeeID

Symbol: Car
Intention: the car that is being deleted from the fleet.

Page 25 of 51

Extension: a car with the make and model like Volkswagen Golf, Volkswagen Polo.

Attributes: Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass

Symbol: DeleteCar
Intention: the event of deleting a car from the fleet.
Extension: a sales assistant with the name Mary Reynolds deleted the car Volkswagen Polo from
the fleet.

Attributes: DateRemovedFromFleet, Make, Model, RegNo

(Please continue to next page…)

Page 26 of 51

Conceptual Class Diagram

In the conceptual class diagram the classes that were identified as symbols were included.
Underneath them are the attributes that will form the data input for the system. Attributes are
important as they form the data input for the system. They will need to be inputted by an actor,
and they will also form part of the interface of the system. The links and associations are shown,
which display how the classes and actors are associated with each other and with different
classes.

(Please continue to next page…)

批注 [ZL7]: Some confusion about conceptual classes and
use case operations

Page 27 of 51

Conceptual model

The conceptual model focuses on the associations between the important concepts and the
company. It shows the multiplicity, which focuses on how many possibilities of the class there are.
It is similar to the conceptual class model, however it focuses more on the relations between the
classes, as opposed to the attributes.

(Please continue on to next page…)

Page 28 of 51

II. Analysis of functionality of system operations

7) Using chapter 6 of the course notes and the techniques used, identify the system operations
from the typical course of events of the use cases. Create system sequence diagrams for the use
cases you think are the most significant for the development of the system.

Register a customer

INPUT OUTPUT

Sales assistant initiates a new customer form

 System loads new customer form

Sales assistant inputs customer details into
the form

Sales assistant submits the form to the system

 System receives submitted form

 System checks all entries are valid data types

 System sends confirmation of new customer
with customerID

Sales assistant closes customer form

Record a particular car has been hired

INPUT OUTPUT

Customer selects car, sales assistant
enters car selection

 System records Customer car selection

Sales Assistant collects customer details

 System assigns customer details with car
hire

Sales Assistant completes sale

 System logs date of sale and details

批注 [ZL8]: Only need to show the direct actor(s), and the
interaction between the actor(s) and the system under
development

Page 29 of 51

Record a particular car has been returned

INPUT OUTPUT

Sales Assistant enters returned cars
details

 System retrieves sale details

 System checks Car details match
customer

Sales Assistant takes car and assigns
car as returned

 System assigns Car as returned

(Please continue to the next page…)

Page 30 of 51

Calculate cost based on the daily hire rate

INPUT OUTPUT

Sales Assistant initiates Car hire form

 System loads Hire car form

Sales Assistant selects a car

Sales Assistant adds hire time

 System receives form

 System ensures data is in correct type

 System calculates hire cost based on
customer’s specification and returns to
Sales assistant the Cost of hire.

Sales Assistant receives cost of hire.

Display appropriate details and print out a receipt

INPUT OUTPUT

Sales Assistant requests hire cost

 System returns the hirecost

Customer Agrees cost and payment is
made

 System processes payment

Sales Assistant requests Receipt

 System gathers necessary details and
returns receipt

Sales Assistant gives receipt to customer

(Please continue to next page…)

Page 31 of 51

Log a completed hire

INPUT OUTPUT

Sales Assistant initiates Completed hire
form

 System returns completed hire form

Sales Assistant enters all necessary
details

 System ensures all are correct data type
and valid

 Returns conformation that records have
been updated to ‘completed’

Sales Assistant receives conformation of
completed hire

(Please continue to next page…)

Page 32 of 51

Determine if a particular car is due for a service

INPUT OUTPUT

Sales assistant selects car from records
and requests a mileage check on the car

 System finds selected car from records
and returns the mileage of the car

Sales Assistant checks whether car has
done more than 6000+ miles and 12000+
miles

Selects Minor or major service

 System books and notes of necessary
service on car records

Sales Assistant receives conformation of
necessary service.

Record a service

INPUT OUTPUT

Sales Assistant requests Car details

 System returns Car details

Sales Assistant enters service details

 System records car service details

 System updates record

(Please continue to next page…)

Page 33 of 51

Add a new car to the fleet

INPUT OUTPUT

Sales Assistant initiates add new car
form

 System loads Add new car form

Sales Assistant inputs car details to new
car form

Sales Assistant submits car form to the
system

 System receives form

 System checks all necessary data has
been inputted in correct data type

 System sends conformation of new car
being added to the fleet and Assigns
carID along with date added to fleet

Sales Assistant closes form.

Delete a car from the fleet

批注 [ZL9]: How can an actor “prompt” the system?

Page 34 of 51

INPUT OUTPUT

Sales Assistant initiates Car removal
from fleet.

 System returns Car removal form

Sales Assistant adds Car details for car
being removed

 System validates data inputted

 System asks for conformation of removal

Sales Assistant confirms removal of car

 System removes the car and returns
conformation of removal to Sales
Assistant

Sales Assistant receives conformation of
removal

Discussion

System sequence diagrams are part of the requirement analysis phase where you focus on what
a system does rather than explain how it’s done. The inputs of an actor are focused on within
these diagrams and not the output of a system.

From the actor to the system, operations take place but no output is shown and from the 2nd actor
to the system, more operations take place. None of the outputs for any operations are shown.

(Please continue to next page…)

Page 35 of 51

8) Based on your use case model and conceptual model that you have produced write the
contracts for the system operations that you have identified.

Start up

Name: StartSystem()
Responsibilities: Start the system ready for data input
Post-conditions:

 SalesDesk, CarCatalog and FuntionList is created.

Register a new customer

Name: arrivesAtSalesDesk()
Responsibilities: The customer arrives at the sales desk
Type: Concept
Cross-reference: Use cases: Register a new customer
Post-conditions: promptRegistration() contract begins.

Name: promptRegistration()
Responsibilities: sales assistant prompts the registration of a customer.
Type: Interface
Cross-reference: Use cases: Register a new customer
Pre-conditions: arrivesAtSalesDesk() has been completed
Post-conditions:

 detailsGiven() contract starts

 FunctionList has been accessed

Name: entersDetails(FirstName, Surname, Age, Address, Postcode, TelNo)
Responsibilities: The sales assistances enters the details to the system
Type: System
Cross reference: Use case: Register a new customer 5
Output: The sales assistance enters the details of the customer into the system
Pre-conditions: detailsGiven(name, address, telephone number) has been
completed

 Post-condition: NewCust is created

 The customerLeaves() contract begins

Name: customerLeaves()
Responsibilities: The customer leaves company
Type:
Concept
Cross reference: Use case: Register a new customer 6
Output: The customer leaves or enquiries about something else
Pre-conditions: entersDetails() has been completed

Record that a particular car has been hired

Name: arrivesSalesDesk()
Responsibilities: The customer arrives at the sales desk
Type: Concept
Cross reference: Use case: Record that a particular car has been hired 1
Post-conditions: Customer begins requestCarHire() contract

Name: requestsCarHire()
Responsibilities: The customer request they would want to hire a car
Type: Concept

批注 [ZL10]: ?

批注 [ZL11]: was

批注 [ZL12]: ?

Page 36 of 51

Cross reference: Use case: Record that a particular car has been hired 2
Pre-condition: arrivesSalesDesk(Customer) has been completed
Post-condition: The sales assistance begins askDetails() contract

Name: asksDetails()
Responsibilities: The sales assistance asks the customers for their details
Type: Concept
Cross reference:
Use case: Record that a particular car has been hired 3
Pre-condition: requestsCarHire() has been completed
Post-condition: The customer begins detailGiven() contract

Name: detailsGiven(FirstName, Surname, CustID, TelNo, DLNo)
Responsibilities: The customer gives their details to the sales assistance
Type: Interface
Cross reference:
Use case: Record that a particular car has been hired 4
Exceptions: The sales assistance misspelled the customers name or telephone number
Pre-condition: askDetails() has been completed
Post-condition:

 The customer begins selectsCar() contract

 NewCarHire is created.

Name: selectsCar(Make, Model, EngineCap, NoOfDoor, NoOfSeats, HireClass)
Responsibilities: The customer selects what car they refer
Type: Interface
Cross reference:
Use case: Record that a particular car has been hired 5
Exception: The make and engine capacity are invalid or they don’t exits
Pre-conditions: detailsGiven() has been completed, all inputs valid.
Post-conditions: Begins recordsWhatCarHasBeenHired() contract.

Name: recordsWhatCarHasBeenHired()
Responsibilities: The sales assistance records what car has been hired
Type: System
Cross reference: Use case: Record that a particular car has been hired 6
Exception: The righty car was not recorded or the sales assistance forgot to record what car had
been hired
Pre-condition: selectsCar() has been competed
Post-condition: Begins customerLeavesWithCar() contract

Name: customerLeavesWithCar()
Responsibilities: The customer leaves with the car they have hired
Type: Concept
Cross reference: Use case: Record that a particular car has been hired 7
Output: The customer leaves or enquiries about something else
Pre-condition: recordsWhatCarHasBeenHired() has been completed

Record that a particular car has been returned

Name: customerArrives()
Responsibilities: The customer arrives at the sales desk
Type: Concept
Cross reference:
Use case: Record that a particular car has been retuned 1
Post-conditions: begin returnsCar() contract

Page 37 of 51

Name: returnsCar()
Responsibilities: The customer returns the car they have hired
Type: System
Cross reference: Use case: Record that a particular car has been returned 2
Post-conditions: begin checksDetails() contract

Name: checksDetails(FirstName, Surname, CustID, DLNo)
Responsibilities: The sales assistance checks the details of the customer to see if they have
retuned the correct car they had hired
Type: System
Cross reference:
Use case: Record that a particular car has been returned.
Pre-conditions: all details are correct. If not an error warning is issued.
Post-conditions:

 The system begins contract recordFileAgreement()

 ReturnedCarHire created.

Name: recordFileAgreement()
Responsibilities: The sales assistance records the evidence into the hire file agreement to state
the car was returned
Type: System
Cross reference:
Use case: Record that a particular car has been hired 4
Exception: The file agreement was misplaced or was lost
Pre-condition: checksDetails() has been competed
Post-condition: begin leavesCompany() contract

Name: leavesCompany()
Responsibilities: The customer leaves the company after returning the car
Type: Concept
Cross reference:
Use case: Record that a particular car has been returned 5
Output: The customer leaves or enquiries about something else
Pre-condition: recordFileAgreement() has been complete

Calculate the cost based on the daily hire rate

Name: carSelect(Make, Model, RegNo)
Responsibilities: Select a specific car and bring up all of its details
Type: System
Cross References: Use Case: Calculate the cost based on the daily hire rate
Exceptions: If registration is not recognised then prompt the user with an error stating the reason
for the error.
Pre-conditions: Registration number known to the system
Post-conditions:

 The system pulls up the cars details relating to the registration number.

 NewCarSelect is created.

Name: hireTime(Days)
Responsibilities: Check the number of days the car has been hired out for
Type: System
Cross References: Use Case: Calculate the cost based on the daily hire rate
Exceptions: If a time period has not been selected then prompt the user to fill in the hire start and
hire finish fields.
Output:

Page 38 of 51

Pre-conditions: The duration of the car hire per day known to the system
Post-conditions: The system calculates the total hire time

Name: costCalculation()
Responsibilities: Calculate the cost of the total hire by the cost per day *(times) the number of
days
Type: System
Cross References: Use Case: Calculate the cost based on the daily hire rate
Exceptions: If there is no hire duration or cost per day then prompts the user about this error
Pre-conditions: The daily cost and the hire time should be known to the system
Post-conditions: The system calculates the total cost of the hire

Name: hireCostAvailable(HireCost)
Responsibilities: The hire cost is correctly displayed on the system
Type: System
Cross References: Use Case: Calculate the cost based on the daily hire rate
Exceptions: if no cost is available then prompt the user of this error
Pre-conditions: The calculations already calculated
Post-conditions: The systems displays the total cost for future reference

Display the appropriate details, and print out a receipt

Name: promptHireCost()
Responsibilities: Sales assistant prompts system for costumers hire cost.
Type: System
Cross References: Use case: Display the appropriate details, and print out a receipt.
Post-conditions: System displays hire cost

Name: promptPrintReceipt(ReceiptNo, CustID, HirePayment, Date, Time)
Responsibilities: Sales assistant prompts system to print customer’s receipt.
Type: System
Cross References: Use case: Display the appropriate details, and print out a receipt.
Pre-conditions: promptHireCost() was completed
Post-conditions:

 A receipt was printed.

 NewReceipt was created.

Name: costumerAquiresReceipt()
Responsibilities: Costumer acquires there receipt from the sales assistant.
Type: Concept
Cross References:
Use case: Display the appropriate details, and print out a receipt.
Note:
Exceptions:
Output:
Pre-conditions: promptPrintReceipt() was completed
Post-conditions: Costumer leaves with receipt

Log a completed hire

Name: recordUpdateOfCompletedHire(RegNo)
Responsibilities: keep an up-to-date record of all completed hires
Type: System
Cross References: Use Case: Log a completed hire
Note:
Exceptions: Prompt the user if there is no record of a hire when the registration is entered

Page 39 of 51

Output:
Pre-conditions: The car must be returned prior a record update
Post-conditions: The system will be updated

Name: returnDateEntered(DateReturned)
Responsibilities: The date of the return must be entered to indicate the end of hire
Type: System
Cross References: Use Case: Log a completed hire
Exceptions: The date must be after the start date otherwise an error message will occur
Pre-conditions: The car must be present for a date to be entered
Post-conditions: Date of the return is now entered and the record is updated

Name: amountToPay(HirePayment)
Responsibilities: Display the cost of the hire
Type: System
Cross References: Use Case: Log a completed hire
Exceptions: If no cost is available then system notifies the user
Pre-conditions: Cost per day and the number of days hired are already known to the system
Post-conditions: Daily cost and duration are calculated to show the amount to pay

Record a service for a particular car, together with the date of the service, the type of the
service, and the name of the mechanic responsible

Name: promptCarDetails()
Responsibilities: prompts the user to input car details
Type: System
Cross References: Use Case: Record a service for a particular car
Post-conditions: the user inputs car details recordCarDetails()

Name: recordCarDetails(Make, Model, RegNo)
Responsibilities: inputs car details to find out car information
Type: Interface
Cross References: use case: record a service for a particular car
Exceptions: If there is no car that satisfies the input details then the system will display an error.
Post-conditions: system shows car details with mileage.

Name: recordService(ServiceType, Mileage, FirstName, Surname, JobRole, EmployeeID)
Responsibilities: the user records or books a service for the car if it is needed.
Type: Interface
Cross References: use case: Record a service for a particular car
Exceptions: a service is not needed and no record will be updated.
Pre-conditions: the car details entered are all valid.
Post-Conditions:

 system updates car record with a service.

 NewServiceRecord is created.

Add a new car to the fleet

Name: promptAddNewCar()
Responsibilities: Sales assistant prompts system to add a new car.
Type: System
Cross References: Use case: Add a new car to the fleet
Post-conditions: Sales assistant moves on to inputCarDetails()

Name: inputCarDetails(Make, Model, EngineCap, NoOfDoors, NoOfSeats, RegNo, HireClass)
Responsibilities: Sales assistant inputs the details of the new car into the system.

Page 40 of 51

Type: System
Cross References: Use case: Add a new car to the fleet
Pre-conditions: car details was valid
Post-conditions:

 A new car was added to system

 NewCarToFleet is created.

Delete a car that is no longer in the hire fleet

Name: inputCarDetails(Make, Model, RegNo)
Responsibilities: Sales assistant inputs the details of the car to be deleted into the system
Type: System
Cross References: Use case: Delete a car that is no longer in the hire fleet.
Pre-conditions: car details were valid
Post-conditions:

 Sales assistant moves on to promptDeleteCar()

 CarDeletedFromFleet is created.

Name: promptDeleteCar()
Responsibilities: Sales assistant prompts the system to delete the car.
Type: System
Cross References: Use case: Delete a car that is no longer in the hire fleet.
Pre-conditions: inputCarDetails() was correct.
Post-conditions: Car was deleted form system

Determine if a particular car is due for a particular service

Name: selectCar(Make, Model, RegNo)
Responsibilities: Select a specific car and bring up all of its details
Type: System
Cross References: Use Case: Determine if a particular car is due for a particular service
Exceptions: If registration is not recognised then prompt the user with an error stating the reason
for the error
Pre-conditions: Registration number known to the system
Post-conditions: the system pulls up the cars details relating to the registration number

Name: mileageCheck6,000+(miles)
Responsibilities: Mileage check of 6,000+ to determine if a minor service is needed Type: System
Cross References: Use Case: Determine if a particular car is due for a particular service
Exceptions: mileage record may not be up to date
Pre-conditions: current mileage of the car is known to the system
Post-conditions: Appropriate service has been assigned to the car

Name: mileageCheck12,000+(miles)
Responsibilities: Mileage check of 12,000+ to determine if a major service is needed
Type: System
Cross References: Use Case: Determine if a particular car is due for a particular service
Exceptions: mileage record may not be up to date
Pre-conditions: current mileage of the car is known to the system
Post-conditions: Appropriate service has been assigned to the car

Name: serviceSelect(minorService, majorService)
Responsibilities:
Type: System
Cross References: Use Case: Determine if a particular car is due for a particular service
Exceptions: none of the services may be required

Page 41 of 51

Pre-conditions: 3 options are available: no service, minor service or major service
Post-conditions: Appropriate service has been assigned to the car

Discussion

Contracts are used to describe a functionality of an operation. The operations are selected from
the system sequence diagrams and then each system operation was then made into contracts.

The contracts include a number of headers, which are important in their own way. I will include
and explain each header that is included in the contracts:

Name: Name of operation from the system sequence diagram
Responsibilities: The reason for this contract and its purpose
Type: a choice between concept, software class, interface or system
Cross References: The name of the use case where the operation is from
Note: Design notes, algorithms, and so on.
Exceptions: Exceptional cases.
Output: Non-UI outputs, such as messages or records that are sent outside of the system.
Pre-conditions: The conditions before an execution takes place
Post-conditions: The conditions when an execution has finished

(Please continue to next page…)
III. Use case design

批注 [ZL13]: Serious work, but showing misunderstanding
of concepts and principles

Page 42 of 51

9) Collaboration diagrams or object sequence diagrams which show the assignment of
responsibilities to classes of objects.

Register a new customer

Record that a particular car has been hired

Record that a particular car has been returned

Calculate the cost based on the daily hire rate

Page 43 of 51

Display the appropriate details, and print out a receipt

Log a completed hire

Page 44 of 51

Record a service for a particular car, together with the date of the service, the type of the
service, and the name of the mechanic responsible

Add a new car to the fleet

Delete a car that is no longer in the hire fleet

Page 45 of 51

Determine if a particular car is due for a particular service

Discussion

An object sequence diagram is focused on the interaction between objects within the system.
The conceptual and the use case model are both needed when the object sequence diagrams
are created, pre and post conditions are important when creating this diagram

(Please continue to next page…)
10) Discuss the use of patterns in your assignment of responsibilities to classes of objects.

批注 [ZL14]:

Serious work, but showing misunderstanding of concepts
and principles

Page 46 of 51

Creator Pattern
Pattern Name: Creator
Solution: Assigning the responsibility to create an instance of a class.

 RequestsCarHire has attributes “detailsGiven” and “selectsCar”

 Meaning that requestCarHire needs input values for these two attributes

 Hence the message carHireComplete from SalesDesk to the System should consist of

“details” and “CarInformation”

 Once car hire is successful SalesDesk passes them in the creation message to the

System

Problem: Who/what should be responsible for knowing CarInformation?
 The actor at the SalesDesk should have the knowledge to provide

Make,Model,EngineCap, NoOfDoors, NoOfSeats, HireClass of each to be hired car.

Controller Pattern
Pattern Name: Controller
Solution: Assigning the responsibility for handling an input to a class.

 RecordCarDetails has an attribute “recordService”

 Meaning that recordCarDetails needs input values for that attribute

 Thus the message NewServiceRecordComplete from SalesDesk to the System should

consist of “serviceInformation”

 Once the “recordService” is completed at the SalesDesk it is the passed in the creation

message to the System

Problem: Who should be responsible for handling an external input event?

 The actor at the SalesDesk will be responsible for gathering the significant information

from the car “ServiceType” and “Mileage”.

The above creator and controller patterns focus of the main functions of the system. They also

contain problem-solving methods that revolve around inputting the correct data types and then

displaying error messages when the incorrect data type is inputted. The creator pattern ensures

that all of the concepts and classes have been assigned the correct attributes. If the correct

attributes are not assigned then it means that there will be invalid or incomplete data. They also

need to be correct to move throughout the system. For example: if one department or sub-system

wanted to view data inputted by another sub-system then they would be able to do so as the data

has been correctly inputted.

(Please continue to next page…)
11) The design class diagrams, which shows the methods/operations of classes.

Page 47 of 51

Design class diagram

Discussion

Page 48 of 51

For the design class diagrams it is important to show the associations between the classes.
However, actors such as sales assistant, mechanic and customer weren’t included, as they are
not needed. In the diagram it is important to show the different associations, where two classes
are connected, or where one is dependent upon another class. It also includes the appropriate
attributes where stated, paired with the data type, such as: string, float or integer.

(Please continues on to next page…)
Meeting attendance

Page 49 of 51

Names Lesson Attendance (Week commencing)

 20th
January
2015

27th
January
2015

3rd
February
2015

10th
February
2015

17th
February
2015

24th
February
2015

3rd
March
2015

15th
April
2015

21st
April
2015

Imaad Yasin

Jamie Uddin

Lucy Shone

Mohammed
Yaseen

Aleksy
Ziarniecki

Bradley
Smith

Gurpreet
Singh

Names Project Meetings Attendance

 Meeting
1

Meeting
2

Meeting
3

Meeting
4

Meeting
5

Meeting
6

Imaad Yasin

Jamie Uddin

Lucy Shone

Mohammed
Yaseen

Aleksy
Ziarniecki

Bradley
Smith

Gurpreet
Singh

Task management and completion

Present

Absent

Page 50 of 51

TASK COMPLETED BY

1.1 Gurpreet

1.2 Lucy, Brad

1.3 Jamie, Imaad, Yaseen

1.4 Jamie, Imaad, Yaseen, Lucy

1.5 Jamie, Imaad, Yaseen, Lucy, Alex, Brad

1.6 Lucy

2.1 Jamie, Imaad, Yaseen, Brad

2.2 Jamie, Imaad, Yaseen

3.1 Jamie, Yaseen, Brad

3.2 Alex, Brad

3.3 Lucy

Project management Imaad, Lucy

Glossary Imaad

Documentation Lucy

(Please continue on to next page…)
Glossary

Page 51 of 51

Attributes – Attributes are properties or characteristics, an example customer is an attribute of
Age

Classes – A group of attributes e.g. Student with the attributes: FirstName, Surname etc.

Conceptual model - A model to show relations between classes and attributes.

Cross-reference – This is related to the use case and the function systems

Contracts – Creating contracts to show what the systems operations do

Essential use cases – The important use cases

Exceptions – A case where a different output will be expected

Intention – What the person intents to do

Integers – Data type that stores whole numbers.

Objects – An object is where data are stored in

Pre-conditions – A condition which happens before an event

Post-conditions – A condition which happens after the event

Strings – Data type that stores alphabetical letters e.g. Name.

Use cases – A list of steps which can be performed by an actor a system

