
CMP2515: Software Design UG2 Coursework - Team Project

1

Undergraduate Programme

Academic Year 2014-2015

Coursework: Team Project

Module: CMP2515 Software Design UG2

School: Computing, Telecommunication and Networks

Module Co-ordinator: Professor Zhiming Liu

Setup Date: 20/02/2015

Submission Date: 21/04/2015

Team Number: M05

Team Leader: Sophie Thompson

Team Members: Anne Oboma, Hamza Ali, Ho Nam Tsang, Karan Badhen,
Kevin Clopon, Olukayode Alatishe,

Instruction to Students:

The final report to submit should contain this page as the cover page, with the above details of the

team filled in.

As part of project management, each team should have a weekly meeting. A weekly project diary

should be maintained to record the attendance of the meetings by team members, together with

brief notes about the weekly project tasks allocations and how well individual team members meet

the deadlines of their project tasks.

The final project report should include the weekly diary in the part of the project management.

Faculty of

Computing, Engineering

and the Built Environment

CMP2515: Software Design UG2 Coursework - Team Project

2

Contents

Section 1 - The Initial Requirements Understanding .. 3

The nature of the Bvis Car Company, and why an Object-Oriented environment

is applicable .. 3

System Functions ... 8

Overview of Project ... 8

Goals ... 9

System Functions ... 10

System Attributes... 1112

Essential Use Cases – High Level Use Cases .. 1213

Extended Use Cases .. 15

Use Case Diagrams .. 33

Classes (Concepts), Associations & Attributes in the Problem Domain............. 3435

Identify Classes (Concepts), Attributes & Associations 3536

Conceptual Class Diagrams .. 46

Conceptual Class Model ... 53

Section 2 – Analysis and Functionality of System Operations .. 54

System Operations & System Sequence Diagrams .. 54

System Operations ... 54

System Sequence Diagrams ... 62

System Operations Contracts .. 67

Section 3 – Use Case Design ... 90

Object Sequence Diagrams... 90

Use of Patterns .. 99

Design Class Diagrams ... 102

Appendix ... 109

Group Meeting Attendance Diary ... 109

Work Allocation ... 110

Section 1: The Initial Requirements Understanding ... 110

Section 2: Analysis and Functionality of System Operations 112

Section 3: Use Case Design .. 113

Section 4: The Report ... 114

CMP2515: Software Design UG2 Coursework - Team Project

3

Section 1 - The Initial Requirements Understanding

The nature of the Bvis Car Company, and why an Object-Oriented environment is

applicable

The Bvis Car Company is a car hire company which currently operates with a paper-based

manual system; managing the current physical functions of adding, removing and updating

company records on the system. These operations also consist of producing and calculating

costs and receipts based on customer payments once their hire is completed. It is evident

from the problem description that a lot of data is recorded throughout the system, and it is

blatant that this important data needs to be easily accessed, maintained and stored within

the new computer-based system using an Object-Oriented development environment. The

current files and concepts within the system are: a customer file, car file, hire agreement file,

and a mechanic file, which all have various different field/attributes within them that contain

the relevant data to store sufficient information for the company, concerning their customer

car hires. All of these files can be easily transformed into object oriented classes containing

properties and attributes for a particular concept. I.e. if the customer file was to be

transformed into a class with objects, then the attributes of that class would be the

customer name, telephone number and address, which would be the customer class’ own

private states to monitor and handle within the new computer-based system.

As the company deals with a wide range of customers on record, they currently have to

manually add, remove and update customer details to their customer file, including: name,

telephone number and address. It is essential to take into consideration that new appended

records would also have to be manually sorted into alphanumeric order in their relevant file,

to ensure sufficient data organisation alongside with fast and easy data access in a paper-

based system. Additionally, the problem description states that if a customer is deemed as

“non-regular” then they can be removed from the company’s records, this in itself can be a

time-consuming process as the staff in charge of files would have to manually search

through the customer records, check to see if the customer regularly hires cars, and if not

then remove them from the company’s files. The process time for this operation can be

significantly minimised with the use of a computer-based system, which could simply track a

record and remove it from the company records in less than a second.

CMP2515: Software Design UG2 Coursework - Team Project

4

The problem description states that every car has to be sent off for two types of service

depending on the mileage of the vehicle, which are performed by the company’s on-site

mechanics. A great deal of data needs to be recorded regarding the upkeep of the cars, how

they are maintained by the company’s mechanical staff, and how often they are hired by

customers. Dates of services have to be manually recorded into the company’s paper-based

system, alongside with the name of the mechanic that performs the service. Here it is

evident that there are various concepts that need to be considered once developing the

system in an OO Environment, as this particular aspect of the system would require data

being pulled from two separate classes, and different objects being created in order to store

the data required for adding the service of a car to the new computerised system, it

indicates that this project is eligible for transformation into an Object-Oriented application.

As a lot of data needs to be recorded for the cars, this can once again be time-consuming

for the staff managing the data, as all of these records need to regularly be updated and

processed, as well as sorted back into order once being edited, which can be prone to

human-error and can decrease the efficiency factor within the system.

As a lot of information is stored within the car file such as, the registration number, make,

model, engine capacity, hire class and service data, this particular file holds very significant

figures as each car has to have up-to-date data within it after each service and hire. Each

car has to have the data concerning the mileage updated each time it is returned from a

hire, and it has to have the data regarding each service added and updated to ensure that it

meets the standard requirements for each customer hire. Handling this prolific scope of data

for one file can be quite haphazard using a paper-based system, as it can be easily prone to

human-error through the confusion and boredom of the persons managing the data. It can

also be extremely time-consuming adding all of the appropriate data to the file, then

repetitively updating the relevant fields to ensure data accuracy and consistence. Therefore,

transforming the current paper-based system to an OO Environment will help control the

size and scalability of files and the information stored within them. As the car file would be

considered as a concept/class within the OO Environment, classes are in charge of their own

private states, functions and methods, therefore this particular file which contains a lot of

data could easily store all of the relevant information needed for the car class, through the

use of instance variables/constants and the various methods used to store and display data

to the user. These can also be manipulated for further use throughout the application, as

data and variables can be accessed via different classes within the application, encouraging

the distribution of data throughout the system.

In the current system, file updates on customer records being added and vehicle returns are

manually altered by the staff in charge of managing the data in the paper-based system.

When a vehicle is hired by an unknown customer their details have to be appended to the

customer file, including their name, telephone number, address and driving licence number.

Once in the customer file, one assumes that the record would need to be placed into

alphanumerical order, which can inevitably be deemed as unnecessarily time-consuming

when completing this process on a paper-based system, as it has to be done manually. It

states that customers have to fill in a hire form once acquiring the hire service, which again

adds excess time to the data processing procedure, the processing time on this function can

significantly be reduced in the new computer-based system.

CMP2515: Software Design UG2 Coursework - Team Project

5

The problem description states that when a car is returned back to the company, the actual

return date and the mileage are recorded in the hire agreement file, and the costs of the

hire are manually calculated by members of staff based upon the daily hire rate. Customers

must only make a cash payment and get a receipt before leaving the company. This

particular attribute of the company’s current paper-based system can easily be replaced with

OO Environment functionality, as calculating the customers’ payment for hire can be

transformed into a method within the hire agreement class within the new computer-based

application, which calculates a customer’s total using the relevant arithmetic assignments in

code. Another method could be used for displaying and printing the customer receipts using

simple methods with ease. Completing these processes in an OO Environment would prove

to be much easier and faster once handling the application, as all of these methods would

automatically be done for the user once the appropriate data is inputted on entry. Whilst,

performing these processes manually especially calculating the customer total costs can be

prone to human error, therefore using an electronic-based system will decrease the potential

for human-error on data input, increasing the accuracy and reliability of data within the

company’s records.

Staff are to regularly record every completed hire within the company, including: the details

of the customer, the dates of the beginning and end of hire, alongside with the amount the

customer has to pay for their service. This information once again could simply be

implemented into an OO Environment application, as the information that needs to be

recorded could easily be stored within instance variables declared inside the program;

allowing them to be accessed by any class within the computer-based system if the

variables are made public in the application. The same could be said for storing data on the

hire class of vehicles, which has to be recorded also. As this data has to be manually added

to the company’s paper-based system, this once again can be very time-consuming and can

cause annoyance for the staff managing the records as they regularly have to add, update,

remove and maintain company records by hand, which can also cause demotivation for staff

and a decrease in morale due to a high workload. An electronic-based OO Environment

application would complete all of these processes with utmost speed and precision, applying

objects, classes and attributes to help manage and maintain company data accurately,

alongside with aiding in the storing of important data. The staff also have to manually add

company mechanic details to the company’s records such as, name, address, telephone

number and they must hold a current driving licence. The same issues with the above

system functionalities apply to this also.

An Object-Oriented Environment is applicable to this project due to the fact that the Bvis Car

Company’s current paper-based system has many concepts within its structure such as: car,

customer, mechanic, hire agreement etc., these concepts represent an abstraction

generalising the properties common to each of the concepts. In the OO framework these

concepts such as car, customer etc. containing their properties/attributes including name,

model etc. can be transformed into a class structure, offering an increase in data

organisation and better storage capabilities.

CMP2515: Software Design UG2 Coursework - Team Project

6

Additionally, as the company’s current system has many functions to consider such as,

inserting, editing and removing data, alongside with calculating customer hire costs, a lot of

these functions can be transformed into class methods. These class methods which perform

differing operations, whether it be assigning values to a variable, or returning the result of

an operation or assignment, the outcome of the method once it is been processed and

performed gets returned to the main class of the application, once the method has been

specifically called by a command written in code.

An OO Environment helps to separate functions and data based on the concepts in which

they’ve been assigned, enabling more control over the behaviour of the system and the data

which is processed and outputted as a result of the operations/procedures performed. This

would be extremely helpful for the Bvis Car Company, as a lot of data needs to be

added/grouped together from different aspects of the business, such as the data regarding

the servicing of a car, has to have information containing the date of service and the

mechanic that performed it, which would need data from two different sources combined.

An OO Environment handles these types of procedures easily, and helps to organise the

data in such a way that storage and data access shouldn’t be a problem for the company

with the future computer-based system. As the OO framework includes concepts/classes

methods and functions within its structure, and the current paper-based system comprises

of a lot of data/operations that need to be performed and maintained, an OO Environment

can help to break down functions into suitable methods to be performed and converted into

source code.

As in the OO Environment, on object simply represents a system entity, the Bvis Car

Company’s current system would contain a series of entities within its structure such as car,

customer etc. These entities/objects are responsible for managing their own private states

and variables, e.g. in the new car class of the computer-based system, the private states

and functions would be declaring variables for all the different fields which are currently

present in the car file such as registration number, make, model etc., which would carefully

store the information required for each car within the company. Data and functions are

encapsulated within an object; therefore all of the data concerned with that particular

class/concept will be stored, updated and maintained specifically within that class. This

particular feature of the OO Environment would prolifically be applicable to this project as

many different operations and procedures need to be carried out within certain aspects of

the company concerning differing entities within the business. For example, when collecting

regular data for the cars within the company, many pieces of information need to be

updated such as who’s hired the car for a particular time, when it needs servicing due to the

mileage value, alongside with the hire class of vehicles also.

A lot of things need to be recorded and functions need to be performed for specific entities,

therefore adopting the class structure for this particular system would be applicable, as the

differing entities could be in their own separate class, containing their own individual

attributes and methods to be performed, making sure that the requirements for the system

are being met adequately. This would enable the differing classes to possess their own

private states, variables and functions to control the behaviour of the separate entities,

ensuring that the new application runs smoothly for the company. Also, other classes can

call for methods within other classes, which encourages the sharing and joining of data

within the application, which is suitable for this system as information regarding cars and

mechanics/ cars and customers would need to be accessed/stored and displayed

simultaneously within the application for the car class and hire agreement file also.

CMP2515: Software Design UG2 Coursework - Team Project

7

Objects are known as instances of a class, therefore a class can have many objects; in

essence, a class can have many records stored within its hierarchy also. Objects belonging

to the same class would have common properties such as attributes and operations, for

example: a record in the customer class otherwise known as an object in OO Environment

terms, would consist of the same type of data stored in the instance variables in the class,

alongside with the same functions which would operate on the data being inputted for the

cars, as it would with a different customer object created from the same class. Therefore, it

maintains data integrity, accuracy and maintainability amongst the records/data within the

system; increasing the reliability of the data stored for the company.

批注 This discussion helps in some way in the
understanding of the problem. However, this part request
the discussion of the attributes of this application in relation
to the five attributes of complex system discussed in Chapter
3 of the course notes. This was actually clearly indicated in
the project description.

CMP2515: Software Design UG2 Coursework - Team Project

8

System Functions

Overview of Project

The purpose of this project for the Bvis Car Company is to transform their current paper-

based car hire system, into a computer-based Object-Oriented structured application. This

application will be operated to control the monitoring of interactions and processes for

customer car hires, and the general upkeep of the regularly used vehicles within the

company.

The generic functions of the system are to securely store records based upon the customers

that hire from the company, the cars within the business/ how they are serviced, the car

hires that occur along with customer payments for hires, alongside with information

regarding the company’s mechanics also. The new computerised system should enable the

user to add, update and remove records from any file/class stored within the application, to

collect the relevant information needed to compile data for car hire agreements.

As the system functions have to take into account the information needed to store data on

car hire agreements such as, the date of car hires and their returns, alongside with the

mileages of the cars to see whether they’re due for a service, a lot of required data needs to

be accumulated for the cars to keep track on their maintenance and the amount of times

they’re hired etc. Therefore, a new computerised system could simply manage all of these

simple procedural operations such as the storing of data in multiple files, alongside with the

functions of adding, editing and deleting company records regarding customers, cars, hire

agreements and mechanics, for specified system requirements.

Additionally, a key feature within the system is calculating the cost of payment for a

customer once their hire is complete. This attribute can also be performed electronically

through the new computer-based system, as software programs are facilitated with built in

features that easily calculate and execute arithmetic assignments for any purpose, in this

scenario we need this specific feature to calculate customer payments based on the daily

hire rate for a car. Then a receipt needs to be produced and displayed for the customer to

view to cease the care hire process.

This system will be able to interact and work with other systems through the fact that the

finishing product, would be OO structured application, and the source code from the

developed program would be able to compile and be distributed throughout company

machines; this is due to the fact that all computer programs created using a programming

language can be transformed into an executable file, which can easily be distributed and

used on differing machines in/outside an organisation or establishment. Therefore, this

would enable different users within the Bvis Car Company to use and benefit from the

system. As this system would provide all of the essential functions for the desired end

product, this application would be suitable for use in the entire company for the staff.

CMP2515: Software Design UG2 Coursework - Team Project

9

Goals

To generalise, the most important goals for this project are to increase the procedural speed

of the functions performed throughout the system. Examples include, the appending of

records to a file, the updating of a record once new data has been collected determining the

values of the new updated record, and the removal of data once it is no longer of use. The

new computer-based system should encourage an increase in efficiency, speed and

customer-satisfaction. More specifically, these goals include:

 Fast and easy access to company records to add or manipulate data to files

 It will aid in the increased speed for processing data on new car hires

 It will help to store company data regarding customers and their payments

 This system will help to keep track of car maintenances such as service information,

hire class data and the mileages consumed after each car hire with ease, enabling

staff to keep control of important company data

 The system will become more efficient as it will be operated electronically,

encouraging faster processing and access time, increasing customer-satisfaction

 It will help increase the morale and motivation of staff, as they will not have to

manually add, edit, delete and sort company records due to the implementation of

the new computer-based system. This can therefore increase staff productivity,

resulting in staff performing better for the company

 An increase in staff productivity can result in an improvement in the quality customer

care and handling, which can also cause an increase of customer satisfaction, which

could potentially result in an increase in customers hiring cars for the business

CMP2515: Software Design UG2 Coursework - Team Project

10

System Functions

Reference Function Category

R1.1 Capture new customer information by inputting the name,
address and telephone number to the company database

Evident

R1.2 Capture new car information by inputting registration
number, make, model, engine capacity, hire class, date of
registration, and date of services along with the mechanic
who performed the services on the vehicle. Add this
information to the company’s database

Evident

R1.3 Capture new mechanic information by inputting the name,
telephone number, address and driving licence number of
the newly hired mechanic, to the company’s database

Evident

R1.4 Remove a customer’s information from the system
database, making it no longer accessible to the user

Evident

R1.5 Ensure that the desired customer record is removed
permanently from the company’s database system

Hidden

R1.6 Remove a car’s details from the system database, making
it no longer accessible to the user

Evident

R1.7 Ensure that the desired car record is removed
permanently from the company’s database system

Hidden

R1.8 Remove a mechanic’s information from the system
database, making it no longer accessible to the user

Evident

R1.9 Ensure that the desired mechanic record is removed
permanently from the company’s database system

Hidden

R1.10 Record once a customer has completed their hire, the
actual date of return and the consumed mileage of the
car whilst it was being hired

Evident

R1.11 Once a customer hires a car, record the estimated return
date for the hire, and the start date of the hire taking into
the current mileage of the vehicle

Evident

R.1.12 If a customer is not already recorded in the company’s
database, then their details must be added to the file

Evident

R1.13 Record the car hire details before the hire is complete,
containing an estimated return date, with the actual start
date of the customer’s car hire

Evident

R1.14 Store the car hire temporary information, until the actual
return date and updated mileage values are received at
the end of the hire process

Hidden

R1.15 Capture the car details from the car hire, such as the new
actual return date for the hire, the mileage and the
customer that proceeded with the hire

Evident

R1.16 Calculate the total cost of payment for the customer
based upon the daily hire rate for that specific car

Hidden

R1.17 Log a completed car hire sale payment Hidden

R1.18 Handle cash payments, and display/print a receipt
showing the total cost of hire for the customer to view
and take away

Evident

R1.19 Provide a sustainable storage mechanism Hidden

CMP2515: Software Design UG2 Coursework - Team Project

11

R1.20 Provide serviceable processes and inter-system
communication mechanisms

Hidden

R1.21 Capture the car servicing details from the management
staff, declaring the date of the service, the mileage of the
car before the service, alongside with the mechanic that
performed the service

Evident

R1.22 Store the servicing data so that it can be accessed at any
time throughout the system

Hidden

R1.23 Store information on cars and their hire class, specifying
the particular hire rate for each car once they are hired

Hidden

System Attributes

Attribute Constraints

CMP2515: Software Design UG2 Coursework - Team Project

12

Essential Use Cases – High Level Use Cases

Response Time The software should be able to identify and
process the information within 1 minute

Ease of Use The user interface should be very simple so
that everyone will be able to use it with
ease, this could be done using simple drop
boxes and check boxes

Operating system Windows and Mac will be compatible

Retail Cost The price of rental will depend on the
information that users input, this will be
decided upon the daily hire rate for the
vehicle, the duration of the rental and the
model of the specific car

Fault-tolerance Creating accounts with usernames and
passwords can be used to prevent faults
and errors happening as the correct details
and information will be checked and
recorded

Accessibility Should be able to access on various pcs
throughout the company’s building that are
connected on a network, as the software
installed should be executable and
distributable

Backup/Storage The information and data should be stored
in separate servers and back up servers
which are in different locations

Privacy/Security As mentioned above, back up and storing
data are to prevent either accident or
human damages, and firewall and anti-virus
can be used to provide internet security

Testability Alpha and Beta testing is vital before this
software can be released to the company

Portability

Once the software is completed it is highly
easily portable as to access the software, as
the application produced would be an
executable file, which can easily be installed
and uploaded onto any machine within the
company offices

批注 A quite analysis and understanding of core
functions of the system

CMP2515: Software Design UG2 Coursework - Team Project

13

Use Case: Register a Customer

Actors: Staff (InitiatorDirect Actor), Customer (Initiator)

Purpose: Collect new customer information to be stored on database

Overview: A customer arrives wanting to hire a car. Staff will initiate to collect the

customers personal information. Upon Completion the customer is now eligible to hire a car

Use Case: Car out for hire

Actors: Staff, Customer (Initiator)

Purpose: Record that a particular car has been hired

Overview: Customer enters and selects the car they would like to use. Staff will pull up their

data from the database. Staff will record the date at which the car hire starts and when the

hire will end (end of hire is estimated)

Use Case: Car Return

Actors: Staff, Customer (Initiator)

Purpose: Record that a particular car has been returned

Overview: Customer returns car. Staff records actual return date and mileage.

Use Case: Record a completed hire

Actors: Staff (Initiator), Customer

Purpose: Log a completed hire

Overview: Once the customer has returned the car a member of staff will log the completed

hire by compiling a file of the details of the customer, dates of beginning and end of hire,

and the amount of payment

Use Case: ServicingProcess a car service

Actors: Staff (Initiator), Mechanic

Purpose: Record a service for a particular car, together with the date of the service, the

type of the service, and the name of the mechanic responsible

Overview: When a car is taken into the garage and has been used for 6,000 miles or 12,000

miles a mechanic is assigned to it. The date of the service is recorded.

Use Case: Removal of customer from database

批注 Avoid design details

批注 Hire a Car

批注 Return a car

CMP2515: Software Design UG2 Coursework - Team Project

14

Actors: Staff (Initiator)

Purpose: Remove a customer.

Overview: Staff will retrieve the customer file and records from their database, once this is

done their records can be removed.

Use Case: Add car

Actors: Staff (Initiator), Management

Purpose: Add a new car to the fleet

Overview: Once a new car has been brought into the garage. The particular cars details

such as model, registration number, make, engine capacity, hire class and date of

registration will be added to the car file.

Use Case: Delete car

Actors: Staff (Initiator), Management

Purpose: Delete a car that is no longer in the hire fleet.

Overview: Once a car is deemed surplus to requirements a member of management will

retrieve their records and delete the car from the fleet.

Use Case: Add mechanic

Actors: Staff (Initiator), Mechanic

Purpose: Add a mechanic who has joined the company

Overview: Once a mechanic has joined the company their details will be recorded such as

name, address and telephone number. In addition it is a requirement for all mechanics to

hold a current driving license.

Use Case: Delete former mechanic

Actors: Management (Initiator), Mechanic, Management

Purpose: Remove the details of a mechanic who has left the company

Overview: Once a mechanic leaves the company a member of management will retrieve

their files and record and delete it from the system.

批注 In general a quite good set of high level use
case decriptions

CMP2515: Software Design UG2 Coursework - Team Project

15

Extended Use Cases

Registering a new customer

Actor Action System Response

1. Customer comes into branch with the
intention of hiring a car

2. A member of staff will initiate the
process of gathering the customers
information

 3. The system reads in the member of
staff’s input from the customer’s
information from the hire form

 4. The information gathered will now be
stored on the company’s database
system

5. The member of staff may present the
customer with their new registered
details, enabling them view their
details

6. The system will present the newly
registered customer’s details to the
screen for display

7. Now the customer has been
registered on the database they can
now proceed to hiring a car

Use Case

This use case focusses upon the process of where the actor (Customer) will arrive at the

company, and will ask to hire a car from the company. The customer will need to register a

new account with the company if their personal details are not already stored within the

company’s database. The customer will need to supply their personal details in order for the

registration process to proceed.

Actors

The actors concerned for this particular use case are the Initiate Actor (Customer), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer registration is achieved. The initiate actor, which

is the customer, is the one who will start off the registration process by approaching the

cashier staff, asking to hire a car from the company. The direct actor, which is the member

of staff, will be the one making direct contact with the system, enabling that the customer’s

registration to be performed by entering in their details to be stored on the company’s

database.

Purpose

The purpose of this analytical review is to enable customers to come into the Bvis Car

Company to register for a future purchase from the business. The direct actor needs to have

efficient communication between the initiate actor, to ensure that the exchange of data for

the registration to be completely successful.

批注 One atomic action

批注 Avoid GUI design details

CMP2515: Software Design UG2 Coursework - Team Project

16

Overview

A customer arrives to the company wanting to hire a car, however they will first need to

register with the company to enable them to hire a car. Staff will initiate to collect the

customers personal information. Upon Completion the customer is now eligible to hire a car.

Car out for hire

Typical course of action:

Actor action System Response

1. A customer will come into the branch
to hire a car.

2. The customer will select a car then
inform a member of staff of their
choice.

3. A member of staff will begin the
process by checking the customers
details to see if they are registered

 4. Once the customer has been found
on the system the member of staff
assigned to this transaction will then
attempt

5. Staff will check to see if the car is
available to be rented by the
customer

 6. The system will check for the car’s
availability within the system

7. Staff will assign the specified car to
the customer with the car hire date
that they will be able to hire the car
from the company

8. Staff will inform the customer on the
estimated return date, so they know
when to return the car back to the
company

 9. A record of the date that the car is
hired, the customer and the expected
return date.

10. The customer can now leave with the
car

批注 More essential system actions needed here

CMP2515: Software Design UG2 Coursework - Team Project

17

Use Case

This use case focusses upon the process of where the actor (Customer) will arrive at the

company, and will ask to hire a car from the company. The staff will need to check the

customer’s details to ensure that they are eligible for a car hire, and they will also need to

check if the car they wish to hire is available. Once those details have been checked the

customer will now be able to leave with the car they wish to hire, and the staff will record

that a particular car has been hired on the company’s system.

Actors

The actors concerned for this particular use case are the Initiate Actor (Customer), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer registration is achieved. The initiate actor, which

is the customer, is the one who will start off the registration process by approaching the

cashier staff, asking to hire a car from the company. The direct actor, which is the member

of staff, will be the one making direct contact with the system, checking the customer’s

details and the car’s availability to ensure that the customer can hire the car. Also, the staff

will need to record the hire on the database.

Purpose

The purpose of this analytical review is to enable customers to come into the Bvis Car

Company to purchase a hire car from the company, and for the hire to be recorded onto the

company’s database. The direct actor needs to have efficient communication between the

initiate actor, to ensure that the exchange of data for the car hire to be completely

successful, and for the details to be recorded accurately.

Overview

A customer enters and selects the car they would like to hire. Staff will pull up the

customer’s data from the database if they have already been registered, then they will check

for the customer’s selected car’s availability. If the car is available then the customer will be

able to hire the car, and the staff will record the date at the beginning of the hire, and the

estimated return date.

CMP2515: Software Design UG2 Coursework - Team Project

18

Car return

Typical course of action:

Actor Action System Response

1. The customer walks into the
company, wanting to return their
hired car on the agreed date

2. The customer will need to show their
registration and car hire data for
proof of hire to enable the return

3. Staff will need to check on the
system whether the customer has an
account, and if their hire has been
recorded

 4. The system will check to see if the
customer is registered with the
company, and if their car hire has
been recorded

5. Staff will enter in the car’s details
that was hired, to ensure that the
vehicle is from the company

 6. The system will check to see if the
car is from the car hire company from
its registration number

7. Staff will inform the customer that
the car has been successfully
returned to the company

8. Staff will log into the system to insert
data concerning the date in which the
car was returned, and the mileage on
the car

 9. The system will record that the car
was returned from the customer,
including the date and mileage of the
car

10. Staff will issue a receipt for the
customer

 11. The system will generate and print a
receipt for the customer

12. The customer will then pay the
amount owed for the hire

 13. The system will record that a
payment was made by the customer
for the car hire, and the transaction
will be recorded with their personal
details

批注 The application logic is not quite right. When
a car is being returned, the hire contract should be found,
data and mileage should be updated, payment should be
dealt with

CMP2515: Software Design UG2 Coursework - Team Project

19

Use Case

This use case focusses upon the process of where the actor (Customer) will arrive at the

company, and will ask to return a hired car back to the company. The staff will need to

check the customer’s registration and car hire details to check when the car was hired and if

it was hired from the company. Once those details have been checked the customer will

now be able to leave the car with the company, and pay for the purchased car hire through

the payment of cash. Staff will record that the car has been returned and that the customer

has paid their owed amount for the hire.

Actors

The actors concerned for this particular use case are the Initiate Actor (Customer), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer car return and payment is achieved. The initiate

actor, which is the customer, is the one who will start off the car return and payment

process by approaching the cashier staff, asking to return a car back to the company, and

then once the car is returned the customer will then pay the amount owed for the hire. The

direct actor, which is the member of staff, will be the one making direct contact with the

system, checking the customer and car details to ensure an effective car return and

payment is achieved. Also, the staff will need to record the car return and customer

payment on the database.

Purpose

The purpose of this analytical review is to enable customers to come into the Bvis Car

Company to return a hired car back to the company, and to make official payment for the

hire, also for the hire and the payment transaction to be recorded onto the company’s

database. The direct actor needs to have efficient communication between the initiate actor,

to ensure that the exchanges of data for the car return and payment to be completely

successful, and for the details to be recorded accurately.

Overview

A customer enters and returns the car in which they previously hired from the company.

Staff will pull up the customer’s hire data from the database if they have already been

registered, then the return process will commence and the customer’s payment transaction

will happen. The staff will record the date at the beginning of the hire, and the actual return

date, alongside with the mileage and the payment made by the customer for the hire.

CMP2515: Software Design UG2 Coursework - Team Project

20

Record a completed hire

Typical course of action:

Actor action System Response

1. Once a customer has returned the
car a member of staff will input
specific information into the system

 2. The system will log the customer who
hired the car, the car type and
model, the date the car was hired
and when it was returned. In addition
a completed record will include
customer payment

3. Once this information has been
recorded and stored a member of
staff will double check to see
everything matches up correctly.

Use Case

This use case focusses upon the process of where the actor (Customer) will arrive at the

company, and will ask to return a hired car back to the company. The staff will need to

check the customer’s registration and car hire details to check when the car was hired and if

it was hired from the company. Once those details have been checked the customer will

now be able to leave the car with the company, and pay for the purchased car hire through

the payment of cash. Staff will record that the car has been returned and that the customer

has paid their owed amount for the hire.

Actors

The actors concerned for this particular use case are the Initiate Actor (Customer), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer car return and payment is achieved. The initiate

actor, which is the customer, is the one who will start off the car return and payment

process by approaching the cashier staff, asking to return a car back to the company, and

then once the car is returned the customer will then pay the amount owed for the hire. The

direct actor, which is the member of staff, will be the one making direct contact with the

system, checking the customer and car details to ensure an effective car return and

payment is achieved. Also, the staff will need to record the car return and customer

payment on the database.

CMP2515: Software Design UG2 Coursework - Team Project

21

Purpose

The purpose of this analytical review is to enable customers to come into the Bvis Car

Company to return a hired car back to the company, and to make official payment for the

hire, also for the hire and the payment transaction to be recorded onto the company’s

database. The direct actor needs to have efficient communication between the initiate actor,

to ensure that the exchanges of data for the car return and payment to be completely

successful, and for the details to be recorded accurately.

Overview

A customer enters and returns the car in which they previously hired from the company.

Staff will pull up the customer’s hire data from the database if they have already been

registered, then the return process will commence and the customer’s payment transaction

will happen. The staff will record the date at the beginning of the hire, and the actual return

date, alongside with the mileage and the payment made by the customer for the hire.

Servicing

Typical course of action:

Actors actions System Response

1. Once a car has been returned from a
customer hire, then their mileage will
be checked and recorded onto the
system

2. Once a car has been used up to
6,000/12,00 miles the staff will make
a note stating it’s time for servicing

3. Once staff has made a note on the
particular car, a mechanic will be
assigned to the job of servicing it

 4. A selection of mechanics can be
chosen to undertake the servicing
process for the car.

5. A mechanic is chosen by staff to
perform the car service, and the
mechanic will be informed

6. The mechanic will then perform the
service on the car

7. Staff will record the details of the car,
mechanic and the date at which the
service should commence.

Use Case

CMP2515: Software Design UG2 Coursework - Team Project

22

This use case focusses upon the process of where the actor (Mechanic) will perform a

service on a car that has been returned with a mileage of 6,000 or 12,000 miles in the

company’s own garage. Once the service has been performed by the designated mechanic

then staff will record that the car has been serviced by a particular mechanic.

Actors

The actors concerned for this particular use case are the Initiate Actor (Mechanic), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer car return and payment is achieved. The initiate

actor, which is the mechanic, is the one who will start off the car service process by

performing the service on the car. However, a mechanic needs to be assigned to the service

by management by selecting them from the system’s database, and then they will be

informed on the service. The direct actor, which is the member of staff, will be the one

making direct contact with the system, checking the mechanic and car details to ensure that

the car is due for a service, and selecting the mechanic to perform the service. Also, the

staff will need to record that the car has been serviced, with the mechanic responsible for

the service on the company’s database.

Purpose

The purpose of this analytical review is to make sure that cars that are due for a service that

have been returned are sent in for a mandatory service by the company’s own mechanics.

The date of the service alongside with the mechanic which performed the service are

recorded into the database. The direct actor needs to have efficient communication between

the initiate actor, to ensure that the exchanges of data for car servicing to be completely

successful, and for the details to be recorded accurately.

Overview

A customer enters and returns the car in which they previously hired from the company.

Staff will pull up the car’s details to check the mileage of the car to see if it’s due for

servicing. If the car is due for servicing then staff will assign a mechanic to perform the

service on the car. Once the mechanic performs the service, staff will record the date of the

service, alongside with the mechanic responsible for the service.

Removal of customer from database

CMP2515: Software Design UG2 Coursework - Team Project

23

Typical course of action:

Actors actions System Response

1. Staff want to remove a customer’s
record from the company database

2. Staff will search the database for the
designated customer by inserting
their details

 3. The system will check to see if the
data entered matches a record on the
system

4. Staff can now choose to delete the
customer’s record from the database

 5. The system will remove the selected
customer record which the member
of staff have chosen to delete

6. Staff will notify the customer that
their personal details have been
removed from their database

 7. The system will inform the customer
via email or SMS

Use Case

This use case focusses upon the process of where the actor’s (Customer) details will be

removed from the company’s database by the members of staff. The staff will need to

check if the customer has been registered within the company’s system by checking if the

customer’s personal details are on the system. If they are then the member of staff will then

delete the selected customer’s record from the database, and will alert higher management

that such action has been taken, via email or SMS.

Actors

The actors concerned for this particular use case are the Initiate Actor (Customer), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful customer record deletion is achieved. The direct actor,

which is the member of staff, will be the one making direct contact with the system, making

sure that the customer’s record is permanently removed from the company’s database, and

they will also alert management that such actions have been taken.

Purpose

The purpose of this analytical review is to enable members of staff to permanently delete

customer records from the company’s database. The direct actor needs to have efficient

communication between the initiate actor, to ensure that the deletions of customer records

are performed successfully.

Overview

CMP2515: Software Design UG2 Coursework - Team Project

24

A member of staff wishes to remove a customer’s record from the database permanently

from the existing system. They would have to search for the customer’s details by inputting

segments of it into the system to initiate a search for the record. Once the record is found

by the system, the member of staff is able to select the record and delete it from the

company’s database. Once this is done, the members of staff are then required to inform

members of management that a particular record has been removed from the company’s

database, via email or SMS.

Add car

CMP2515: Software Design UG2 Coursework - Team Project

25

Typical course of action:

Actors actions System Response

1. Once the company has brought a
new car into the garage it is the
responsible of senior staff/
management to add the car to the
database

2. Staff will need to input the car’s
details onto the system

 3. The system will check to see if the
car’s details are accurate to be stored
on the system for hire

 4. The car details such as model,
registration number, make, engine
capacity, hire class and date of
registration will all be stored on the
database.

5. Management will be notified that a
new car has been added to the fleet,
ready for customer use

 6. The system will inform management
via email or SMS that a new car has
been added to the company

7. Once the data has been successfully
inputted onto the database the car
can now be hired for customer
usage.

Use Case

This use case focusses upon the process of where the actor (Staff) will add a new car that

has been added to the fleet onto the company’s database. The member of staff will need to

input all of the car’s necessary details to ensure that the car is insured with the company,

and that it is eligible for future customer hires. Once the car’s details have been stored and

added it will now be ready to be hired by a customer.

Actors

The actors concerned for this particular use case are the Initiate Actor (Mechanic), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The direct actor, which is the member of

staff, will be the one making direct contact with the system, who will be adding the car’s

necessary details to the company’s database, to ensure that it is fit for customer hires. The

staff will need to ensure that new car details are successfully recorded to the company’s

database.

Purpose

CMP2515: Software Design UG2 Coursework - Team Project

26

The purpose of this analytical review is to make sure that new cars that are added to the

fleet, have their details successfully recorded onto the company’s database. The direct actor

needs to ensure that all of the relevant details concerning the cars are accurately recorded

to ensure that they are eligible for customer car hires.

Overview

A new car is added to the company’s fleet and members of staff have to add the car’s

relevant details to the company’s database. The system will check to see if the car’s details

are correct and if they are then the car’s details will have been successfully added to the

database. Once a new car has been added to the fleet and onto the company’s database

then staff must inform members of management of the action, via the use of email or SMS.

Delete car

CMP2515: Software Design UG2 Coursework - Team Project

27

Typical course of action:

Actors actions System Response

1. Staff want to remove a particular

car’s record from the company

database

2. Once the company has brought an
old car in the garage it is the
responsible of senior staff/
management to delete the car on the
database

3. Staff will search the database for the
designated vehicle by inserting its
details

 4. The system will check to see if the
data entered matches a record on the
system

5. Staff can now choose the car in
which they wish to delete by
selecting their details on the system

 6. The car details such as model,

registration number, make, engine

capacity, hire class and date of

registration will all be removed from

the database.

7. Staff will notify management that a
car has been removed from the
company and the database records

 8. The system will inform management
via email or SMS that a car has been
removed from the company

9. Once the data has been successfully

deleted from the database the car

can no longer be hired for customer

usage.

Use Case

CMP2515: Software Design UG2 Coursework - Team Project

28

This use case focusses upon the process of where a car’s details will be removed from the

company’s database, and from the fleet by the members of staff. The staff will need to

check if the car has been registered within the company’s system by checking if the car’s

relevant details are on the system. If they are then the member of staff will then delete the

selected car’s record from the database, and will alert higher management that such action

has been taken, via email or SMS.

Actors

The actors concerned for this particular use case is the Direct Actor (Staff). The initiate actor

is the one that commences the process of the use case, and the direct actor is the one that

makes direct contact with the system to ensure that the process for the use case is

performed. The direct actor needs to perform and interact with the system effectively for

successful record deletion to take place. The direct actor, which is the member of staff, will

be the one making direct contact with the system, making sure that the car’s record is

permanently removed from the company’s database, and they will also alert management

that such actions have been taken.

Purpose

The purpose of this analytical review is to enable members of staff to permanently delete

car records from the company’s database. The direct actor needs to have efficient

communication with the system, to ensure that the deletions of car records from the fleet

are performed successfully.

Overview

A member of staff wishes to remove a car record from the database permanently from the

existing system. They would have to search for the car’s details by inputting segments of it

into the system to initiate a search for the record. Once the record is found by the system,

the member of staff is able to select the record and delete it from the company’s database.

Once this is done, the members of staff are then required to inform members of

management that a particular record has been removed from the company’s database, via

email or SMS.

Add mechanic

CMP2515: Software Design UG2 Coursework - Team Project

29

Typical course of action:

Actors actions System Response

1. A new mechanic will come into the

store but before he can start work he

would have to get registered by a

member of management.

2. A member of staff will take specific
information from the mechanic such
as name, address, telephone number.
In addition the mechanic must have a
valid driver’s license to complete this
enrolment process.

 3. The system will store the personal
details of the new mechanic for the
company

4. Staff will add some additional
information for the mechanic such as
the hours in which they will work,
and their annual salary

 5. The system will store this additional
work hours / annual salary
information on the company
database for later use

 6. Once the relevant information has
been entered on the system the
mechanic is now an employee of the
company. The system will again
verify whether or not the mechanic
has a valid driving license.

Use Case

This use case focusses upon the process of where the actor (Mechanic) has been newly

employed by the company, and so their personal details are to be recorded into the

company’s database by members of staff. The mechanic will need to supply their personal

details and state their current valid driving licence number, in order to be eligible to work for

the company as a qualified mechanic. The members of staff will need to accurately record

these details, alongside with additional data such as working hours and the annual salary of

the mechanic also.

Actors

CMP2515: Software Design UG2 Coursework - Team Project

30

The actors concerned for this particular use case are the Initiate Actor (Mechanic), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful mechanic registration is achieved. The initiate actor, which

is the mechanic, is the one who will start off the registration process by being newly

employed by the company, in which case their personal details must be recorded by

members of staff into the company database. The direct actor, which is the member of staff,

will be the one making direct contact with the system, enabling that the mechanic’s

registration to be performed by entering in their details to be stored on the company’s

database.

Purpose

The purpose of this analytical review is to enable new mechanics that have been hired by

the company to register their details, so that they are on the company’s database system, to

enable them to work for the Bvis Car Company. The direct actor needs to have efficient

communication between the initiate actor, to ensure that the exchange of data for the

registration to be completely successful.

Overview

A new mechanic has been employed by the Bvis Car Company, and their personal details

including their current driving licence number needs to be added to the company’s database.

Members of staff then add the mechanic’s personal details to the database, and the system

will then check to see if the data entered is accurate. If it is then the mechanic’s data has

been successfully entered into the system, and the mechanic is now able to start working

for the company.

Delete former mechanic

CMP2515: Software Design UG2 Coursework - Team Project

31

Typical course of action:

Actors actions System Response

1. A mechanic will cease to be

employed by the company requiring

management team to delete the

former employees records

2. Staff will search the database for the
designated mechanic by inserting
their details

 3. The system will check to see if the
data entered matches a record on the
system

4. Staff can now choose the mechanic
in which they wish to remove from
the database, by selecting their
details on the system

 5. Once the system locates the
mechanic those members with the
correct authority now have the option
to delete the mechanics records

6. Management can now proceed and
delete the former mechanic

 7. The system will now remove the
mechanic’s personal details from the
database

8. Staff will notify management that a
mechanic has left the company and
their personal details have been
removed from the database records

 9. The system will inform management
via email or SMS that a mechanic has
left the company

Use Case

CMP2515: Software Design UG2 Coursework - Team Project

32

This use case focusses upon the process of where the actor’s (Mechanic) details will be

removed from the company’s database by the members of staff. The staff will need to

check if the mechanic has been registered within the company’s system by checking if the

customer’s personal details are on the system. If they are then the member of staff will then

delete the selected mechanic’s record from the database, and will alert higher management

that such action has been taken, via email or SMS.

Actors

The actors concerned for this particular use case are the Initiate Actor (Mechanic), and the

Direct Actor (Staff). The initiate actor is the one that commences the process of the use

case, and the direct actor is the one that makes direct contact with the system to ensure

that the process for the use case is performed. The two actors need to effectively

communicate so that successful mechanic record deletion is achieved. The direct actor,

which is the member of staff, will be the one making direct contact with the system, making

sure that the mechanic’s record is permanently removed from the company’s database, and

they will also alert management that such actions have been taken.

Purpose

The purpose of this analytical review is to enable members of staff to permanently delete

former mechanic records from the company’s database. The direct actor needs to have

efficient communication between the initiate actor, to ensure that the deletions of customer

records are performed successfully.

Overview

A member of staff wishes to remove a mechanic’s record from the database permanently

from the existing system. They would have to search for the mechanic’s details by inputting

segments of it into the system to initiate a search for the record. Once the record is found

by the system, the member of staff is able to select the record and delete it from the

company’s database. Once this is done, the members of staff are then required to inform

members of management that a particular record has been removed from the company’s

database, via email or SMS.

批注 Show a good understanding of the
interactive nature of use cases, and the format of expanded
use cases, that is the typical of course of events. Weak ability
of dealing with application logic, and no treatment of
alternative course of events

CMP2515: Software Design UG2 Coursework - Team Project

33

Use Case Diagrams

批注 It should be that “Hire a care” uses “register
customer. The labels on the relation between actors and use
cases are not mean to be association.

CMP2515: Software Design UG2 Coursework - Team Project

34

Classes (Concepts), Associations & Attributes in the Problem Domain

Here will be the featured classes, associations and attributes for each of the essential use

cases provided from Q3 of the assignment. Alongside with that description will be a

conceptual class diagram for each essential use case, displaying how each concept links with

CMP2515: Software Design UG2 Coursework - Team Project

35

one another using associations. I have chosen these concepts from the problem description

due to the fact that, a lot of objects will be derived from them, such as the car class, the

customer class and the mechanic class. Also, a lot of relating objects and classes link to

these specific concepts such as car hire relates to the class car, and register customer

relates to the class customer, therefore these classes can be singled out as primary classes

where a lot of information and data can derive from and be inputted into. The attributes

come directly from the problem description, as it states that particular aspects need to be

recorded onto the system to store as information for a particular object coming from the

system. For example: Name, address and driving licence number need to be stored in the

mechanic file, as pre-determined by the problem description, therefore it will become an

attribute for the mechanic class. Associations are what link the different classes together,

particular tasks have to be done, and the system needs to complete specific operations for

certain classes to be able to link. These associations are later identified when defining the

classes below.

Quite logical groups of use cases in use case diagrams, though there are some

misunderstanding about the meaning of the relations between use cases

Identify Classes (Concepts), Attributes & Associations

Registering a new Customer

Classes:

批注 By ZL

CMP2515: Software Design UG2 Coursework - Team Project

36

Symbol: Customer

Intension: The initiate actor who is being newly registered by the company onto its

database

Extension: e.g. Customers with names Tony Thompson, Layton Boyce, Jordan Smikle…

Symbol: Staff

Intension: The direct actor who completes the registration for the customer

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Register a Customer

Intension: The action taken to register a new customer with the company via Staff

Extension: e.g. Tony Thompson is registered as a new customer by the member of staff

Chris Bosh

Attributes

Customer: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Register a Customer: Date of registration, Staff who registered, Customer who registered

Car out for Hire

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

37

Symbol: Customer

Intension: The initiate actor is looking to hire a car from the company

Extension: e.g. Customers with names Tony Thompson, Layton Boyce, Jordan Smikle…

Symbol: Staff

Intension: The direct actor who registers and records the customer’s car hire for the

company

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Car

Intension: The car that is being hired by the customer from the company

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Car Hired

Intension: The action of the customer hiring a car from the company

Extension: e.g. Layton Boyce hired the car Honda Civic from the company

Attributes:

Customer: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Car: Make, Model, Registration Number, Colour, Insurance Company, Breakdown Cover,

Tax

Car Hired: Car Hire Date, Car Return Date

Car Return

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

38

Symbol: Customer

Intension: The initiate actor is looking to return the car in which they hired from the

company

Extension: e.g. Customers with names Tony Thompson, Layton Boyce, Jordan Smikle…

Symbol: Staff

Intension: The direct actor who records the return of the hired car from the customer

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Car

Intension: The car that is being returned from a hire by the customer

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Car Return

Intension: The action of a customer returning a hired car back to the company

Extension: e.g. Jordan Smikle returns the hired car which is recorded by Dwayne Wade

Attributes:

Customer: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Car: Make, Model, Registration Number, Colour, Insurance Company, Breakdown Cover,

Tax

Car Return: Date of Registration, Estimated return date, Actual Return Date, Mileage,

Amount of Payment

Record a Completed Hire

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

39

Symbol: Customer

Intension: The initiate actor has returned the car in which they hired from the company

Extension: e.g. Customers with names Tony Thompson, Layton Boyce, Jordan Smikle…

Symbol: Staff

Intension: The direct actor records the return of the hired car from the customer

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Car

Intension: The car that is being returned from a hire by the customer

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Record Completed Hire

Intension: The action of a customer returning a hired car back to the company

Extension: e.g. Jordan Smikle returns the hired car which is recorded by Dwayne Wade

Attributes:

Customer: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Car: Make, Model, Registration Number, Colour, Hire Class, Insurance Company, Breakdown

Cover, Tax

Record Completed Hire: Date of Registration, Estimated return date, Actual Return Date,

Mileage, Amount of Payment

Servicing

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

40

Symbol: Staff

Intension: The direct actor designates a mechanic to perform a service on one of the

company’s returned cars

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Mechanic

Intension: The initiate actor performs the service on the cars

Extension: e.g. Mechanics with names James Jones, Franklin Johnson, Walter James…

Symbol: Car

Intension: The car that is being serviced by the mechanic

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Car Service

Intension: The action of a car undergoing a service by the company’s mechanic

Extension: e.g. Nissan Micra Activ undergoes a service performed by James Jones

Attributes:

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Mechanic: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Car: Make, Model, Engine Capacity, Registration Number, Colour, Mileage, Date of

Registration, Tax

Car Service: Date of service, Mechanic Responsible, Mileage at Service

Removal of Customer from Database

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

41

Symbol: Customer

Intension: The initiate actor that is being removed from the company’s database

Extension: e.g. Customers with names Tony Thompson, Layton Boyce, Jordan Smikle…

Symbol: Staff

Intension: The direct actor that is performing the deletion of the current customer from

the company’s system

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Customer Removed from Database

Intension: The action of a customer being removed from the company’s database via a

member of staff

Extension: Member of staff Lebron James removes customer Tony Thompson from the

company’s database

Attributes:

Customer: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Customer Removed from Database: Date record was removed, Staff responsible,

Customer Name

Add Car

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

42

Symbol: Car

Intension: The car that is being added to the company’s fleet

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Staff

Intension: The direct actor who is adding the new car’s record to the company’s database

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: New Car Addition

Intension: The action of a new car being added to the company’s fleet by a member of

staff

Extension: e.g. Dwayne Wade adds the new car Citroen C1 to the company’s car fleet

Attributes:

Car: Make, Model, Engine Capacity, Hire Class, Date of Registration, Mileage, Insurance

Company, Breakdown Cover, Tax

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

New Car Addition: Car addition Date, Previous owner, Previous Owner Details

Delete Car

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

43

Symbol: Car

Intension: The car that is being removed from the company’s fleet

Extension: e.g. Cars such as Citroen C1, Nissan Micra Activ, Honda Civic…

Symbol: Staff

Intension: The direct actor who is removing the car’s record from the company’s database

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Car Removal from Fleet

Intension: The action of car being removed from the company’s fleet by a member of staff

Extension: e.g. Lebron James removes the car Honda Civic from the company’s car fleet

Attributes:

Car: Make, Model, Engine Capacity, Hire Class, Date of Registration, Mileage, Insurance

Company, Breakdown Cover, Tax

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Car Removal from Fleet: Car Removal Date, Reason for Removal, Car Removed

Add Mechanic

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

44

Symbol: Mechanic

Intension: The new initiate actor whose details are being registered to the company’s

database

Extension: e.g. Mechanics with names James Jones, Franklin Johnson, Walter James…

Symbol: Staff

Intension: The direct actor who’s inputting the new mechanic’s details into the company’s

database

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Addition of a new Mechanic

Intension: The action of a member of staff adding a new mechanic’s details to the

company’s database that has currently joined the business

Extension: e.g. Chris Bosh add the new mechanic Franklin Johnson

Attributes:

Mechanic: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Addition of a new Mechanic: Date of registration, Staff who registered, Mechanic new to

company

Delete Former Mechanic

Classes:

CMP2515: Software Design UG2 Coursework - Team Project

45

Symbol: Mechanic

Intension: The initiate actor that is being removed from the company’s database

Extension: e.g. Mechanics with names James Jones, Franklin Johnson, Walter James…

Symbol: Staff

Intension: The direct actor that is removing the former mechanic from the company’s

database

Extension: e.g. Staff with names Lebron James, Dwayne Wade, Chris Bosh…

Symbol: Removal of Former Mechanic

Intension: The action of a member of staff removing a former mechanic from the

company’s database

Extension: e.g. Dwayne Wade removes the former mechanic Walter James

Attributes:

Mechanic: Name, Mobile Number, Home Telephone Number, Address, Driving Licence

Number

Staff: Name, Mobile Number, Home Telephone Number, Address, Role

Removal of Former Mechanic: Mechanic Removal Date, Reason for Removal, Mechanic

Name

CMP2515: Software Design UG2 Coursework - Team Project

46

Conceptual Class Diagrams

Registering a New Customer

Delete Mechanic

批注 In general, the overall class diagram is quite
informative, but some important classes are missing, such as
Bvis Company and Bvis System. This would lead to difficulties
in later design, though it can be recovered when applying
controller Pattern. However, in that case, conceptual class
diagram should be modified too. Another problem is that
many or the most of multiplicities of the associations are not
right (though is is usually a hard problem for starters,
especially those who are weak in mathematics)

CMP2515: Software Design UG2 Coursework - Team Project

47

Car Our For Hire

CMP2515: Software Design UG2 Coursework - Team Project

48

Car Return

CMP2515: Software Design UG2 Coursework - Team Project

49

Record a Completed Hire

CMP2515: Software Design UG2 Coursework - Team Project

50

Servicing

CMP2515: Software Design UG2 Coursework - Team Project

51

Removal of Customer from Database

Add Car

CMP2515: Software Design UG2 Coursework - Team Project

52

Delete Car

Add Mechanic

CMP2515: Software Design UG2 Coursework - Team Project

53

Conceptual Class Model

CMP2515: Software Design UG2 Coursework - Team Project

54

Section 2 – Analysis and Functionality of System Operations

System Operations & System Sequence Diagrams

System Operations

Register Customers

Input Events Output Events

1. Customer arrives at cashier desk.

2. Customer starts registrations

3. Staff enters customers details

4. Staff submits customer registrations

 5. System confirms registrations

6. Staff confirms customers

registrations

7. Customer leaves cashier desk.

Car out for hire

Inputs Outputs

1. Customer arrive at cash desk

2. Staff check customer details on
system

 3. System then display customer
details to staff

4. Customer then select a car

5. Staff check availability of car
selected by customer on system

 6. System confirms car availability

7. Staff informs customer about the
car

8. Staff records hired car details on
system

9. Customer leaves cash desk

批注 No a system operation

批注 Not a system operation

批注 Not a system operation

批注 What you are actually doing is repeating the
typical course of events, and this is not needed

CMP2515: Software Design UG2 Coursework - Team Project

55

Car return

Input events Output events

1. Customer arrives at cash desk

2. Customer shows their details to

staff

3. Staff check customer information

on system

 4. System display customer details to

staff

5. Staff inputs car details to system

 6. System check registration of hire

car

CMP2515: Software Design UG2 Coursework - Team Project

56

Record completed hire

Input events Output events

1. Customer arrives at cash desk

2. Customer then give their details to

staff

3. Staff then inputs information on the

system

 4. System display customer

information to staff

5. Staff informs customer about car

return

6. Customer pays amount for hire car 7. System prints receipt for staff

8. Customer leaves money on desk

CMP2515: Software Design UG2 Coursework - Team Project

57

Servicing

Input events Output events

1. Mechanics sends car information

record to system

 2. System then display car record to

staff

3. Staff then records mileage

information which is sent to the

system

4. Staff then picks mechanic

5. Staff then records details on the

system

Remove Customer

Input Events Output Events

1. Staff searches for existing customer

on system

 2. System returns existing customers

records

3. Staff removes existing customers

record

 4. System confirms customer removal

5. Staff informs customer of their

removal

 6. System sends email to customer of

removal

CMP2515: Software Design UG2 Coursework - Team Project

58

Add Car

Input events Output events

1. Staff initiate a new car to add

2. Staff then inputs new car

3. Staff then verifies the car details

on system

 4. Systerm then returns the

confirmation to staff

5. Staff then notify manager of the

addition of the car

 6. System then sends confirmation

email to manager

CMP2515: Software Design UG2 Coursework - Team Project

59

Delete car

Input Events Output Events

1. Staff initiate car removal

2. Staff searches for car details on

system

3. Staff verify car details

 4. System displays cars verified

details

5. Staff removes details from system

 6. System removes car details

 7. System sends removal notification

to staff

8. Staff notifies management on car

removal

 9. System emails management of cars

removal

CMP2515: Software Design UG2 Coursework - Team Project

60

Add mechanic

Input events Output events

1. Mechanic initiate themselves to the

system

2. Staff enters mechanic details

3. Staff submits mechanics details to

system

 4. System confirm mechanic

registration

5. Staff shows confirmation to

mechanic

 6. System shows confirmed

registration to mechanic

CMP2515: Software Design UG2 Coursework - Team Project

61

Delete mechanic

Input Events Output Events

1. Staff initiate removal of mechanic

2. Staff search for existing mechanic

 3. The system returns existing

mechanic data

4. Staff then deletes mechanics record

 5. The system confirms mechanics

removal

6. Staff notifies mechanic on removal

7. Staff informs mechanic of removal

 8. The system send email to

mechanics of

CMP2515: Software Design UG2 Coursework - Team Project

62

System Sequence Diagrams

Register a new Customer

Car Out For Hire

批注 Message1, 1,2,4.1,5,6 should not be in the
use sequence diagram

CMP2515: Software Design UG2 Coursework - Team Project

63

Car Return

Record a Completed Hire

CMP2515: Software Design UG2 Coursework - Team Project

64

Servicing

Removal of Customer from Database

CMP2515: Software Design UG2 Coursework - Team Project

65

Add Car

Delete Car

CMP2515: Software Design UG2 Coursework - Team Project

66

Add Mechanic

Delete Mechanic

批注 Good understanding of the syntax (format of
use case sequence diagrams) , but weak understanding of
the abstraction needed. These sequence diagrams are useful,
but also confusing if not cleared up before moving to the
next step of the development

CMP2515: Software Design UG2 Coursework - Team Project

67

System Operations Contracts

Name: StartUp()

Responsibilities: Initialises/ boots up the system.

Post-conditions:

 A MemberOfStaff, Garage, CashDesk, CarList, ServiceList and ServiceSpecification

were created

 ServiceSpecification was associated with ServiceList

 ServiceList was associated with Garage

 CashDesk was associated with Garage

 ServiceList was associated with CashDesk

 ServiceSpecification was associated with CarList

Register Customer

Name: ArrivalAtCashDesk()

Responsibilities: The customer arrives at the cash desk, which initiates the operation by

communicating with the MemberOfStaff.

Type: Concept

Cross-Reference: System Sequence Diagrams: Register Customer 1

Post-conditions: Customer begins InitiateCustomerRegistration() contract.

Name: InitiateCustomerRegistration()

Responsibilities: Customer informs cashier that they want to be registered with the

company.

Type: Concept

Cross-Reference: System Sequence Diagrams: Register Customer 2

Pre-conditions: ArrivalAtCashDesk() has been completed

Post-conditions: MemberOfStaff begins EnterCustomerDetails() contracts

批注 Most of these objects have no classes in the
class diagram. I do understand why you have this problem
here.

批注 No class in the class diagram

批注 You do not have CashDesk in the class diagrm

批注 This is not a system operation. Thus, no
contract should be defined for it.

CMP2515: Software Design UG2 Coursework - Team Project

68

Name: EnterCustomerDetails()

Responsibilities: Member of Staff inputs in the new customer’s details into the system to

register with the company.

Type: Interface

Cross-Reference: System Sequence Diagrams: Register Customer 3

Pre-conditions: MemberOfStaff must enter in the customer’s details including: Name, Mobile

Number, Home Telephone Number, Address, and Driving Licence Number

Post-conditions:

 RegisterCustomer was selected from ServiceList

 Details entered by MemberOfStaff used for SubmitCustomerRegistration() contract

Name: SubmitCustomerRegistration()

Responsibilities: MemberOfStaff sends the customer’s details through to the system to

complete the registration process

Type: System

Cross-Reference: System Sequence Diagrams: Register Customer 4

Pre-conditions: EnterCustomerDetails() has been completed

Post-conditions:

 RegisterCustomer was selected from ServiceList

 Details entered by MemberOfStaff used for SubmitCustomerRegistration() contract

Name: ConfirmRegistration()

Responsibilities: The MemberOfStaff will receive confirmation that the new customer has

been registered with the company

Type: Interface

Cross-Reference: System Sequence Diagrams: Register Customer 4.1

Output: MemberOfStaff receives confirmation that the new customer’s details have been

registered with the company

Pre-conditions: SubmitCustomerRegistration() has been completed

Post-conditions: RegisterCustomer was de-selected from the ServiceList

CMP2515: Software Design UG2 Coursework - Team Project

69

Name: ConfirmCustomerRegistration()

Responsibilities: Customer receives confirmation that they have been registered with the

company

Type: Interface

Cross-Reference: System Sequence Diagrams: Register Customer 5

Output: Customer receives confirmation that their details have been registered with the

company

Pre-conditions: ConfirmRegistration() has been completed

Post-conditions: RegisterCustomer was de-selected from the ServiceList

Name: LeaveCashDesk()

Responsibilities: Customer leaves the cash desk/ building or initiates another process

Type: Concept

Cross-Reference: System Sequence Diagrams: Register Customer 6

Output: Customer leaves the cash desk or they inform the member of staff on another

query

Pre-conditions: ConfirmCustomerRegistration() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

70

Car Out For Hire

Name: ArriveAtCashDesk()

Responsibilities: Customer informs member of staff that they wish to hire a car from the

company

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Out For Hire 1

Post-conditions: MemberOfStaff begins ChecksCustomerDetails() contract

Name: ChecksCustomerDetails()

Responsibilities: MemberOfStaff inputs customer details into the system to check if they

have already been registered with the company

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Out For Hire 2

Exceptions: Customer’s details do not match any rows within the company’s database

Pre-conditions: ArriveAtCashDesk has been completed

Post-conditions:

 If customer exists, Begin DisplaysDetails() contract

 If the customer’s details do not display, MemberOfStaff will begin the function:

Register Customer

Name: DisplaysDetails()

Responsibilities: MemberOfStaff receives confirmation that the customer exists from the

system pulling up the customer’s record

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Out For Hire 2.1

Output: MemberOfStaff receives confirmation of the customer’s record existing in the

database

Pre-conditions: ChecksCustomerDetails() has been completed

Post-conditions: Customer can now begin SelectCar() contract

CMP2515: Software Design UG2 Coursework - Team Project

71

Name: SelectCar()

Responsibilities: The customer selects an available car from the company’s garage for them

to hire

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Out For Hire 3

Exceptions: The make and model of the car that the customer chooses is not available or

identified on the database

Pre-conditions: DisplayDetails() has been completed

Post-conditions: Begin CheckCarAvailability() contract

Name: CheckCarAvailability()

Responsibilities: MemberOfStaff inputs the car details that the customer has chosen to hire

to see if it is available

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Out For Hire 4

Exceptions: The make and model of the car that the customer chooses is not available or

identified on the database

Pre-conditions: SelectCar() has been completed

Post-conditions:

 If car exists, begin ReturnCarAvailability() contract

 If the car’s details do not display, then Customer will have to return back to the

SelectCar() contract

Name: ReturnCarAvailability()

Responsibilities: The system will verify that the make and model of the car that the

customer wants to hire exists, and the number of available vehicles there are

Type: Interface and System

Cross-Reference: System Sequence Diagrams: Car Out For Hire 4.1

Output: Returns the car’s make and model that the customer wants, as well as the amount

available in the garage

Pre-conditions: CheckCarAvailability() has been completed

Post-conditions:

 If car’s make and model is found then continue onto InformCustomerOnHire()

contract

 If the car’s details do not display, then Customer will have to return back to the

SelectCar() contract

CMP2515: Software Design UG2 Coursework - Team Project

72

Name: InformCustomerOnHire()

Responsibilities: MemberOfStaff informs the customer that they are now able to hire their

desired car from the company

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Out For Hire 5

Pre-conditions: ReturnCarAvailability() has been completed

Post-conditions: MemberOfStaff begins RecordCarHireDetails() contract

Name: RecordCarHireDetails()

Responsibilities: MemberOfStaff inputs the car hire details from the customer into the

company’s database

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Out For Hire 6

Pre-conditions: InformCustomerOnHire() has been completed

Post-conditions: Customer begins LeavesCashDesk() contract

Name: LeavesCashDesk()

Responsibilities: The customer leaves the cash desk or starts another process by asking a

query

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Out For Hire 7

Output: The customer either leaves the cash desk or starts another process by asking a

query

Pre-conditions: RecordCarHireDetails() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

73

Car Return

Name: ArrivesAtCashDesk()

Responsibilities: The customer arrives at the cash desk, stating that they wish to return

their hired car

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Return 1

Post-conditions: Customer begins ShowsCustomerDetails() contract

Name: ShowsCustomerDetails()

Responsibilities: The customer shows their customer details, along with their car hire

details to initiate the return

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Return 2

Pre-conditions: ArrivalAtCashDesk() has been completed

Post-conditions: MemberOfStaff begins ChecksCustomerDetails() contract

Name: ChecksCustomerDetails()

Responsibilities: MemberOfStaff inputs the customer’s personal details as well as their car

hire details to see if the hire has been recorded in the database on the day beginning of hire

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Return 3

Exceptions: The customer’s car hire details do not match any company records on the

database

Pre-conditions: ShowsCustomerDetails() has been completed

Post-conditions:

 If customer car hire details exist, begin ReturnsCustomerDetails() contract

 If the car hire details do not display, then end the function: Car Return, and tell them

to register with the company

CMP2515: Software Design UG2 Coursework - Team Project

74

Name: ReturnsCustomerDetails()

Responsibilities: The system returns a result with the customer’s car hire details, along with

their personal details

Type: System

Cross-Reference: System Sequence Diagrams: Car Return 3.1

Output: Returns the customer’s car hire details to the MemberOfStaff so they can confirm

that the customer hired a car, so it can be returned

Pre-conditions: CheckCustomerDetails() has been completed

Post-conditions:

 If the customer’s car hire details and their personal details exist, begin

InputCarDetails() contract

 If they don’t exist, then end the function: Car Return, and tell them to register with

the company

Name: InputCarDetails()

Responsibilities: MemberOfStaff inputs the car details into the system to verify that the car

hired was hired by the allocated customer

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Return 4

Pre-conditions: ReturnsCustomerDetails() has been completed

Post-conditions: Begins ChecksRegistrationOfCarHire() contract

Name: ChecksRegistrationOfCarHire()

Responsibilities: The system checks to see whether the car has been hired by the customer,

so it can be returned, and then it displays the information to the MemberOfStaff

Type: System

Cross-Reference: System Sequence Diagrams: Car Return 4.1

Output: The system will output the car’s details showing that it was hired by the designated

customer, and that it is ready to be returned

Pre-conditions: InputCarDetails() has been completed

Post-conditions:

 If the details of the car that was hired are correct, begin

InformCustomerAboutCarReturn() contract

 If the details returned are not correct, return back to contract: InputCarDetails()

CMP2515: Software Design UG2 Coursework - Team Project

75

Name: InformCustomerAboutCarReturn()

Responsibilities: The MemberOfStaff informs the customer that their details are correct and

that the car has now been returned

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Return 5

Output: MemberOfStaff informs customer that their details have been found, and now the

car has been returned

Pre-conditions: ChecksRegistrationOfCarHire() has been completed

Post-conditions: MemberOfStaff begins InsertCarHireDetails() contract

Name: InsertCarHireDetails()

Responsibilities: MemberOfStaff inputs the final details of the customer’s car hire onto the

system, including the actual return date and the amount owed from the customer.

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Return 6

Pre-conditions: InformCustomerAboutCarReturn() has been completed

Post-conditions: Customer begins PaysOwedAmountForHire() contract

Name: PaysOwedAmountForHire()

Responsibilities: The customer confirms a method a payment for the car hire service as well

as the total cost, taking into account the daily hire rate for the car for the total cost

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Return 7

Pre-conditions: InsertCarHireDetails() has been completed

Post-conditions: System begins ConfirmsPayment() contract

CMP2515: Software Design UG2 Coursework - Team Project

76

Name: ConfirmsPayment()

Responsibilities: The customer confirms a method a payment for the car hire service as well

as the total cost, taking into account the daily hire rate for the car for the total cost

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Return 7.1

Output: The customer receives confirmation that their payment for their car hire services

has been completed, with their total amount information and hire details

Pre-conditions: PaysOwedAmountForHire() has been completed

Post-conditions: System begins PrintsReceipt() contract once customer payment and

confirmation is complete

Name: PrintsReceipt()

Responsibilities: The system prints a receipt for the MemberOfStaff to give to the customer

as evidence of customer payment and confirmation

Type: Interface

Cross-Reference: System Sequence Diagrams: Car Return 7.2

Output: A printed receipt is given to the MemberOfStaff to give to the customer

Post-conditions: ConfirmsPayment() has been completed

Pre-conditions: Customer begins LeavesCashDesk() contract, or selects another service

from the company on request

Name: LeavesCashDesk()

Responsibilities: Customer leaves the cash desk, or selects another service upon request

Type: Concept

Cross-Reference: System Sequence Diagrams: Car Return 8

Output: Customer leaves the cash desk, or selects another service upon request

Pre-conditions: PrintsReceipt() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

77

Record Completed Hire

Name: ArrivesAtCashDesk()

Responsibilities: The customer arrives at the cash desk, and then their car hire details are

recorded

Type: Concept

Cross-Reference: System Sequence Diagrams: Record Completed Hire 1

Post-conditions: Customer begins GivesDetails() contract

Name: GivesDetails()

Responsibilities: The customer shows their customer details, so the MemberOfStaff can

record their hire details

Type: Concept

Cross-References: System Sequence Diagrams: Record Completed Hire 2

Pre-conditions: ArrivesAtCashDesk() has been completed

Post-conditions: MemberOfStaff begins InputInformation() contract

Name: InputInformation()

Responsibilities: MemberOfStaff inputs the customer’s car hire details into the system, for it

to be checked and recorded

Type: Interface

Cross-Reference: System Sequence Diagrams: Record Completed Hire 3

Pre-conditions: GivesDetails() has been completed

Post-conditions: Begins CheckInformation() contract

Name: CheckInformation()

Responsibilities: The system checks to see whether the car hire information has been

successfully entered into the system

Type: System

Cross-Reference: System Sequence Diagrams: Record Completed Hire 3.1

Exceptions: The system does not show up with the customer’s car hire details

Pre-conditions: InputInformation() has been completed

Post-conditions: Begins DisplaysInformation() contract

CMP2515: Software Design UG2 Coursework - Team Project

78

Name: DisplaysInformation()

Responsibilities: The system returns the customer’s car hire information to the

MemberOfStaff

Type: Interface

Cross-Reference: System Sequence Diagrams: Record Completed Hire 3.2

Output: The system returns back the customer’s car hire details to confirm that their details

have been inputted into the system successfully

Pre-conditions: CheckInformation() has been completed

Servicing

Name: RecordCarInformation()

Responsibilities: MemberOfStaff records the car information when it is returned from a hire,

including the mileage to see if it is ready for a service by the mechanic

Type: Interface

Cross-Reference: System Sequence Diagrams: Servicing 1

Post-conditions: Begin DisplaysInformation() contract

Name: DisplaysInformation()

Responsibilities: The system returns back the car information recorded by the member of

staff, as confirmation that the record has been added before it is due for servicing

Type: Interface

Cross-Reference: System Sequence Diagrams: Servicing 1.1

Output: The MemberOfStaff is able to see the car hire details of the returned car before its

service

Pre-conditions: RecordCarInformation() has been completed

Post-conditions: MemberOfStaff begins PicksMechanic() contract

CMP2515: Software Design UG2 Coursework - Team Project

79

Name: PicksMechanic()

Responsibilities: The MemberOfStaff picks the mechanic that is due to perform the service

of a returned vehicle

Type: Concept

Cross-Reference: System Sequence Diagrams: Servicing 2

Output: The MemberOfStaff informs the mechanic that they have to perform a service on a

designated vehicle that has been returned

Pre-conditions: DisplaysInformation() has been completed

Post-conditions: If the desired mechanic’s details appear, begin InformsMechanic()

Name: InformsMechanic()

Responsibilities: The MemberOfStaff informs the designated mechanic that they will be

performing a particular service for a car that has been returned

Type: Concept

Cross-Reference: System Sequence Diagrams: Servicing 3

Output: The MemberOfStaff informs the mechanic that they will be performing a service on

a car

Pre-conditions: PicksMechanic() has been completed

Post-conditions: MemberOfStaff begins RecordDetails() contract

Name: RecordsDetails()

Responsibilities: The MemberOfStaff records the car service details on the system

Type: Interface

Cross-Reference: System Sequence Diagrams: Servicing 4

Pre-conditions: InformsMechanic() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

80

Remove Customer

Name: SearchForExistingCustomer()

Responsibilities: The MemberOfStaff search for a customer’s details on the company’s

database, by inputting the customer’s details for them to remove it

Type: Interface

Cross-Reference: System Sequence Diagrams: Remove Customer 1

Post-conditions: Begin ReturnExistingCustomerRecord() contract

Name: ReturnExistingCustomerRecord()

Responsibilities: The system returns and displays back the desired customer record and

displays the option for deletion

Type: System

Cross-Reference: System Sequence Diagrams: Remove Customer 1.1

Exception: If the system states that the customer that is getting deleted does not match

any records on the system

Pre-conditions: SearchForExistingCustomer() has been completed

Post-conditions:

 If the system returns back the desired customer record, MemberOfStaff begins

RemoveCustomer() contract

 If no record is found, return back to the contract: SearchForExistingCustomer()

Name: RemoveCustomer()

Responsibilities: The MemberOfStaff now selects the option to remove the desired

customer’s record from the company’s database

Type: Interface

Cross-Reference: System Sequence Diagrams: Remove Customer 2

Pre-conditions: ReturnExistingCustomerRecord() has been completed

Post-conditions: Begin ConfirmCustomerRemoval() contract

CMP2515: Software Design UG2 Coursework - Team Project

81

Name: ConfirmCustomerRemoval()

Responsibilities: The system confirms to the MemberOfStaff that the designated customer

has been removed from the system

Type: System

Cross-Reference: System Sequence Diagrams: Remove Customer 2.1

Output: The system displays confirmation to the MemberOfStaff that the desired customer

details have been removed

Pre-conditions: RemoveCustomer() has been completed

Post-conditions: MemberOfStaff begins InformCustomerOnRemoval() contract

Name: InformCustomerOnRemoval()

Responsibilities: The MemberOfStaff informs the customer that their details have now been

removed from the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Remove Customer 3

Pre-conditions: ConfirmCustomerRemoval() has been completed

Post-conditions: Begin SendEmailOrSMS() contract

Name: SendEmailOrSMS()

Responsibilities: The system sends an email or an SMS to the customer to inform them that

their details have been removed from the company’s database

Type: System

Cross-Reference: System Sequence Diagrams: Remove Customer 2.2

Pre-conditions: InformCustomerOnRemoval() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

82

Add Car

Name: InitiateAddCarToFleet()

Responsibilities: The MemberOfStaff begins the process of adding a new car to the fleet

and to the database

Type: Concept

Cross-Reference: System Sequence Diagrams: Add Car 1

Post-conditions: MemberOfStaff begins InputNewCarDetails() contract

Name: InputNewCarDetails()

Responsibilities: The MemberOfStaff inputs the new car’s details into the company’s

database

Type: Interface

Cross-Reference: System Sequence Diagrams: Add Car 2

Pre-conditions: InitiateAddCarToFleet() has been completed

Post-conditions: Begin VerifyCarDetails() contract

Name: VerifyCarDetails()

Responsibilities: The system verifies and checks whether the car details have been correctly

entered

Type: System

Cross-Reference: System Sequence Diagrams: Add Car 2.1

Exception: The system shows that the car details entered are incorrect

Pre-conditions: InputNewCarDetails() has been completed

Post-conditions:

 If the car details have been correctly verified, begin

ReturnNewCarConfirmationResult() contract

 If not, return to the contract: InputNewCarDetails()

CMP2515: Software Design UG2 Coursework - Team Project

83

Name: ReturnNewCarConfirmationResult()

Responsibilities: The system returns the new car’s information to the MemberOfStaff to

verify that the car’s details have successfully been added

Type: System

Cross-References: System Sequence Diagrams: Add Car 2.2

Output: Displays the new car’s details to the MemberOfStaff to verify that its details have

successfully been added to the database

Pre-conditions: VerifyCarDetails() has been completed

Post-conditions: MemberOfStaff begins NotifyNewCarAddition()

Name: NotifyNewCarAddition()

Responsibilities: The MemberOfStaff informs management that a new car has been added

to the fleet, and its details has been added to the company’s database

Type: Concept

Cross-References: System Sequence Diagrams: Add Car 3

Pre-conditions: ReturnNewCarConfirmationResult() has been completed

Post-conditions: Begin SendEmailOrSMS() contract

Name: SendEmailOrSMS()

Responsibilities: The system sends an email or an SMS to the management team to inform

them that a new car has been added to the fleet and its details have been added to the

company’s database

Type: System

Cross-Reference: System Sequence Diagrams: Add Car 2.3

Pre-conditions: NotifyNewCarAddition() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

84

Delete Car

Name: InitiateCarRemoval()

Responsibilities: The MemberOfStaff starts the process of removing a car from the fleet and

its details from the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Delete Car 1

Post-conditions: MemberOfStaff begins SearchForCarDetails() contract

Name: SearchForCarDetails()

Responsibilities: The MemberOfStaff search for a car’s details on the company’s database,

by inputting the car’s details for them to remove it

Type: Interface

Cross-Reference: System Sequence Diagrams: Delete Car 2

Pre-conditions: InitiateCarRemoval() has been completed

Post-conditions: Begin CarDetailsFoundAndVerified() contract

Name: CarDetailsFoundAndVerified()

Responsibilities: The system returns and displays back the desired car record, it has been

verified and displays the option for deletion

Type: System

Cross-Reference: System Sequence Diagrams: Delete Car 2.1

Exception: The car details are not found on the system

Pre-conditions: SearchForCarDetails() has been completed

Post-conditions:

 If the system returns back the desired car record, MemberOfStaff begins

RemoveCarDetailsFromFleet() contract

 If no record is found, return back to the contract: SearchForCarDetails()

CMP2515: Software Design UG2 Coursework - Team Project

85

Name: RemoveCarDetailsFromFleet()

Responsibilities: The MemberOfStaff now selects the option to remove the desired car

record from the company’s database

Type: Interface

Cross-Reference: System Sequence Diagrams: Delete Car 3

Pre-conditions: CarDetailsFoundAndVerified() has been completed

Post-conditions: Begin CarDetailsRemoved() contract

Name: CarDetailsRemoved()

Responsibilities: The system removes the car’s details from the system, as it is no longer in

the fleet

Type: System

Cross-Reference: System Sequence Diagrams: Delete Car 3.1

Pre-conditions: RemoveCarDetailsFromFleet() has been completed

Post-conditions: Begin SendRemovalNotification() contract

Name: SendRemovalNotification()

Responsibilities: The system informs shows the MemberOfStaff that a car’s details have

now been removed from the company’s database and from the fleet

Type: System

Cross-Reference: System Sequence Diagrams: Delete Car 3.2

Output: The system displays to the MemberOfStaff that the car’s record has now been

removed from the company’s database

Pre-conditions: CarDetailsRemoved() has been completed

Post-conditions: MemberOfStaff begins NotifyOnCarRemoval() contract

Name: NotifyOnCarRemoval()

Responsibilities: The MemberOfStaff informs management that a car has been added from

the fleet, and its details have been removed from the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Delete Car 4

Pre-conditions: SendRemovalNotification() has been completed

Post-conditions: Begin SendEmailOrSMS() contract

CMP2515: Software Design UG2 Coursework - Team Project

86

Name: SendEmailOrSMS()

Responsibilities: The system sends an email or an SMS to the management team to inform

them that a car has been removed from the fleet and its details have been removed from

the company’s database

Type: System

Cross-Reference: System Sequence Diagrams: Delete Car 3.3

Pre-conditions: NotifyOnCarRemoval() has been completed

Add Mechanic

Name: InitiateAddMechanic()

Responsibilities: The Mechanic begins the process by stating that they have joined the

company, and their details need to be recorded

Type: Concept

Cross-Reference: System Sequence Diagrams: Add Mechanic 1

Post-conditions: MemberOfStaff begins EnterMechanicDetails() contract

Name: EnterMechanicDetails()

Responsibilities: The MemberOfStaff inputs the new Mechanic’s personal details into the

company’s database

Type: Interface

Cross-Reference: System Sequence Diagrams: Add Mechanic 2

Pre-conditions: InitiateAddMechanic()

Post-conditions: MemberOfStaff begins SubmitMechanicDetails()

Name: SubmitMechanicDetails()

Responsibilities: MemberOfStaff sends the new mechanic’s details through to the system

Type: Interface

Cross-Reference: System Sequence Diagrams: Add Mechanic 3

Pre-conditions: EnterMechanicDetails() has been completed

Post-conditions: Begin ConfirmMechanicRegistration() contract

CMP2515: Software Design UG2 Coursework - Team Project

87

Name: ConfirmMechanicRegistration()

Responsibilities: The system returns the new mechanic’s information to the MemberOfStaff

to verify that the mechanic’s details have successfully been added

Type: System

Cross-References: System Sequence Diagrams: Add Mechanic 3.1

Output: Displays the new mechanic’s details to the MemberOfStaff to verify that its details

have successfully been added to the database

Pre-conditions: SubmitMechanicDetails() has been completed

Post-conditions: MemberOfStaff begins ConfirmMechanicRegistration() contract

Name: ConfirmMechanicRegistration()

Responsibilities: The MemberOfStaff informs the new mechanic that their details have been

added to the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Add Mechanic 4

Pre-conditions: ConfirmMechanicRegistration() has been completed

Post-conditions: Begin ConfirmAddedToSystem() contract

Name: ConfirmAddedToSystem()

Responsibilities: The system informs the mechanic that their new details have been added

to the company’s database, via the use of email of SMS

Type: System

Cross-Reference: System Sequence Diagrams: Add Mechanic 3.2

Pre-conditions: ConfirmMechanicRegistration() has been completed

CMP2515: Software Design UG2 Coursework - Team Project

88

Delete Mechanic

Name: InitiateRemoveMechanic()

Responsibilities: The MemberOfStaff starts the process of removing a former mechanic

from the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Delete Mechanic 1

Post-conditions: MemberOfStaff begins SearchForExistingMechanic() contract

Name: SearchForExistingMechanic()

Responsibilities: The MemberOfStaff search for the mechanic’s details on the company’s

database, by inputting the mechanic’s details for them to remove it

Type: Interface

Cross-Reference: System Sequence Diagrams: Delete Mechanic 2

Pre-conditions: InitiateRemoveMechanic() has been completed

Post-conditions: Begin ReturnExistingMechanicRecord() contract

Name: ReturnExistingMechanicRecord()

Responsibilities: The system returns and displays back the desired former mechanic record,

it has been verified and displays the option for deletion

Type: System

Cross-Reference: System Sequence Diagrams: Delete Mechanic 2.1

Exception: The system doesn’t find the mechanic’s details on the database

Pre-conditions: SearchForExistingMechanic() has been completed

Post-conditions:

 If the system returns back the desired mechanic record, MemberOfStaff begins

RemoveMechanicRecord() contract

 If no record is found, return back to the contract: SearchForExistingMechanic()

CMP2515: Software Design UG2 Coursework - Team Project

89

Name: RemoveMechanicRecord()

Responsibilities: The MemberOfStaff now selects the option to remove the desired

mechanic record from the company’s database

Type: Interface

Cross-Reference: System Sequence Diagrams: Delete Mechanic 3

Pre-conditions: ReturnExistingMechanicRecord() has been completed

Post-conditions: Begin ConfirmMechanicRemoval() contract

Name: ConfirmMechanicRemoval()

Responsibilities: The system removes the former mechanic’s details from the system, as

they are no longer an employee in the company

Type: System

Cross-Reference: System Sequence Diagrams: Delete Mechanic 3.1

Output: The system displays to the MemberOfStaff that the mechanic’s record has now

been removed from the company’s database

Pre-conditions: RemoveMechanicRecord() has been completed

Post-conditions: MemberOfStaff begins NotifyMechanicOnRemoval() contract

Name: NotifyMechanicOnRemoval()

Responsibilities: The MemberOfStaff informs the former mechanic that their details have

been removed from the company’s database as they are no longer a part of the company

Type: Concept

Cross-Reference: System Sequence Diagrams: Delete Mechanic 4

Pre-conditions: ConfirmMechanicRemoval() has been completed

Post-conditions: MemberOfStaff begins InformOnMechanicRemoval() contract

Name: InformOnMechanicRemoval()

Responsibilities: The MemberOfStaff informs management that a former mechanic’s details

has been removed from the company’s database

Type: Concept

Cross-Reference: System Sequence Diagrams: Delete Mechanic 5

Pre-conditions: NotifyMechanicOnRemoval() has been completed

Post-conditions: Begin SendEmailOrSMS() contract

CMP2515: Software Design UG2 Coursework - Team Project

90

Name: SendEmailOrSMS()

Responsibilities: The system sends an email or an SMS to the management team to inform

them that a car has been removed from the fleet and its details have been removed from

the company’s database

Type: System

Cross-Reference: System Sequence Diagrams: Delete Mechanic 6

Pre-conditions: InformOnMechanicRemoval() has been completed

Section 3 – Use Case Design

Object Sequence Diagrams

Registering a new Customer

批注 In general the report show a vague
understanding about contracts and knows vaguely how to
describe it. However, It also shows that the student do not
understand their usage well. There is a weak understanding
of the relation between contracts and the conceptual class
diagram

CMP2515: Software Design UG2 Coursework - Team Project

91

Car Out For Hire

批注 These diagrams show basic understanding of
using sequence diagrams to describe interaction and
message passing. However the student have a weak
understanding of OO design, possibly because of the lack of
OO programing experience.

The relation between object sequence diagrams and use
case sequence diagrams , and the relation between object
sequence diagrams conceptual diagrams are poor.

CMP2515: Software Design UG2 Coursework - Team Project

92

Car Return

CMP2515: Software Design UG2 Coursework - Team Project

93

Record a Completed Hire

Servicing

CMP2515: Software Design UG2 Coursework - Team Project

94

Removal of Customer from Database

CMP2515: Software Design UG2 Coursework - Team Project

95

Add Car

CMP2515: Software Design UG2 Coursework - Team Project

96

Delete Car

Add

CMP2515: Software Design UG2 Coursework - Team Project

97

Mechanic

CMP2515: Software Design UG2 Coursework - Team Project

98

Delete Mechanic

CMP2515: Software Design UG2 Coursework - Team Project

99

Use of Patterns

Controller Pattern

Pattern Name: Controller Pattern

Solution: Assign the responsibility of inputting data into the system to a class that has a role

associated to it, represented by one of the following:

 Represents the role of a person, i.e. a person that may be involved in the task of

inputting system data

 Represents an artificial handler of the whole system input

 Represents the entire system

Problem: Who/what is going to be responsible for inputting concept details and data into

the system, as the controller pattern implies that the controller is a non-user interface object

with the responsibility of controlling user input into the system. Therefore, for this operation

to be completed, the responsibility needs to be given to a controller that takes into

consideration user-input, so data can actually be added into the system.

The controller pattern applies to this assignment due to the fact that, there are various

controller concepts throughout the project’s entirety. For example: Staff, Customer and Car

are all examples of controllers using the controller pattern, as the system revolves a lot

around user input into the system, a controller based pattern is essential for defining he

method of user input for the system. As a controller pattern states that the controller

doesn’t exactly carry out the system operations, they just input data into the system to be

manipulated, the controller pattern is definitely evident within this system, as the user

inputters would be the members of Staff of the company, so therefore they would be

classed as the controllers, as they are simply inputting data and then delegating the system

operations onto the actual interface to deal with whatever was inputted into the system via

the controller.

Here the controller classes, such as Staff and Customer are used for all of the system inputs,

such as recording Customer, Mechanic and Car data, as well as for removing company data

also, which all align with the relevant use cases concerning: Registering a Customer, Add

Mechanic, Add Car, Car Hire, Car Return, Remove Car, Remove Customer, Remove Mechanic

etc. There is a single controller class which is Staff that is receiving all system inputs, and

various other classes that are receiving system outputs sent by the Staff controller.

Additionally, the Staff controller is able to handle most of the system operations itself such

as inputting data and manipulating details, without the need to delegate work to other

classes, reinforcing high-cohesion.

There are also some artificial handlers for some of the operations using controllers such as:

Car Hired, Car Return, Register Customer, Remove Customer etc. These represent the

system operating on certain processes within the program, such as performing these

operations.

CMP2515: Software Design UG2 Coursework - Team Project

100

Creator Pattern

Pattern: Creator Pattern

Solution: Assign the instance of the main class responsibility for creating an object or

instance of the main class, for example:

 Class B contains Class A objects

 Class B produces instances of Class A objects

 Class B uses Class A objects

 Class B contains data that will be passed onto Class A once it is created

Problem: Who/what is responsible for creating a new instance of a class, or an object of a

class. As with creator patterns, it assumes that one of the classes within the system, has

instances of itself with relational operations, making another class an instance of that class,

which would therefore make the main class the creator of the relational instances of that

class, with different methods associating themselves with the main creator class.

The creator pattern applies to this assignment due to the fact that, there are some classes

which aggregate objects from different classes, such as the Car class. The car class has

many other objects derived from it, such as Car Hired, Car Return, Servicing and

Add/Remove Car. As all of these objects derive from the class Car, it would suggest that Car

would be a suitable creator for these instances. The creator pattern is also demonstrated

with the Customer and Mechanic classes, as they each have classes that are related to them,

or aggregate them. For example: The Customer has objects derived from it such as Register

Customer and Remove customer, all of which relate back to the main Customer class, which

could indicate that Customer could potentially be a suitable creator class. Similarly, with the

Mechanic class, it also has objects derived from it such as, Add Mechanic and Delete

Mechanic, all of which relate and directly correlate back to the Mechanic class. Which could

indicate that they may be sub-classes that are in relation to their main classes, Customer

and Mechanic.

This indicates that certain methods created within the derived objects must relate or pass on

information to the creator class, such as Add Mechanic would have to pass on information to

the Mechanic class, informing that a new record has been created and therefore placed

within the class. Another example would be, that the classes Car Return, Car Hire etc. these

classes pass information onto the Car class once changes have been made or information

has been added, which would indicate that the Car class is a creator.

CMP2515: Software Design UG2 Coursework - Team Project

101

Low Coupling Pattern

Pattern: Low Coupling Pattern

Solution: Assign a responsibility to classes so that coupling and dependency stays low.

Problem: How to support low dependency classes?

The Low Coupling Pattern applies to this assignment due to the fact that, there are some

classes within the system that do highly relate to one another, has knowledge of or relies

upon one another. The Register Customer class heavily relies upon and is related to the

Customer class, as any changes made to the Customer file on the system, via Register

Customer or Remove Customer, must be updated and changed within the Customer class

also. This also applies to the Mechanic and Car classes also. As each of the main classes

have objects derived from them, i.e. Car has Add Car, Remove Car, Car Hire and Car Return

deriving from it, all of these classes are highly related back to the Car class, as each of them

contain relevant information or processes that will change or update the objects within the

Car class, therefore the Car Class is a suitable example of how this assignment uses the Low

Coupling Pattern. The assignment of responsibilities to particular classes partner those of

their main classes. For example: the Register Customer class has the responsibilities to add

a customer to the database, creating a Customer class. It is clear that the responsibilities of

the Register Customer class complement those of the Customer class.

CMP2515: Software Design UG2 Coursework - Team Project

102

Design Class Diagrams

Registering a new Customer

Delete Mechanic

批注 The overall design class diagram is required

CMP2515: Software Design UG2 Coursework - Team Project

103

Car Out For Hire

CMP2515: Software Design UG2 Coursework - Team Project

104

Car Return

CMP2515: Software Design UG2 Coursework - Team Project

105

Record a Completed Hire

CMP2515: Software Design UG2 Coursework - Team Project

106

Servicing

CMP2515: Software Design UG2 Coursework - Team Project

107

Removal of Customer from Database

Add Car

CMP2515: Software Design UG2 Coursework - Team Project

108

Delete Car

Add Mechanic

CMP2515: Software Design UG2 Coursework - Team Project

109

Appendix

Group Meeting Attendance Diary

*Green represents the group member that was present for the meeting on that particular

week

Names in Attendance
Week Commencing Meeting

Discussion

Sophie
Thompson

Anne
Oboma

Hamza
Ali

Ho Nam
Tsang

Karan
Badhen

Kevin
Clopon

Olukayode
Alatishe

26th January

Begin Project,
allocate roles to

each member for

Section 1.

2nd February

Continue
progress on
Section 1.

9th February

Continue
progress on

Section 1.

16th February

Continue
progress on
Section 1.

23rd February

Confirm roles for

section 2 and 3

of project.

1st March

Start progress on
section 2 of the

project

8th March

Continue
progress on

section 2 of the

project.

15th March

Continue
progress on

section 2 of the
project.

 22nd March

 29th March

CMP2515: Software Design UG2 Coursework - Team Project

110

Work Allocation

Section 1: The Initial Requirements Understanding

Task

name

Description Assigned

team

members

Start

date

Estimated

date of

completion

Completed

by:

Actual date of

completion

Situation Discuss the nature of

the Bvis Car Hire

Company described

above and justify
why an object-

oriented development

applicable to the

project.

You need to read and

refer points to ideas

discussed Chapter 3

of the course notes.
Elaborate the problem

description as

necessary to support

your analysis.

Sophie

Thompson

26th

January

10th February Sophie 24th February

System

Functions

Present the system

functions according to

the guidelines in

Section 4.1 of the
course notes

Sophie

Thompson

Ho Nam

Tsang

26th

January

10th February Sophie

Thompson

Ho Nam

Tsang

3rd February

Essential

use cases

Identify the essential

use cases, which

cover and support the

understanding of the

required functions in

the problem

description.

Write an expanded

version for each of

these use cases.

Olukayode

Alatishe

Kevin Clopon

Hamza Ali

26th

January

10th February Olukayode

Alatishe

Kevin

Clopon

Hamza Ali

10th February

Use case

diagrams

Create a use case

diagram for the use

cases that you

identified in the

previous question to

show the relationships

between the actors

and the use cases,

and the relationships

between the use

cases.

Olukayode

Alatishe

Kevin Clopon

Hamza Ali

10th

February

17th February Olukayode

Alatishe

Kevin

Clopon

Hamza Ali

17th February

CMP2515: Software Design UG2 Coursework - Team Project

111

Identifying

classes,

associatio

ns and

attributes

within the

application

domain

Using the guidelines,

strategies, and

notation discussed in

the course notes,

work through the

problem statement

and the use cases

that you have

identified in item 3 to

identify classes

(concepts),

associations, and

attributes in the

application domain.

You should give

enough discussion to

support your

identification.

Draw a conceptual

class diagram, which

includes, the classes,

associations, and

attributes that you

have identified. Again,

you only have to

consider the functions

and the use cases

that you considered

for item 3. You should

give enough

discussion to support

your identification.

Draw a conceptual

model, which

includes, the classes,

associations, and

attributes that you

have identified. You

may find that you

need to refine or

modify your use

cases.

Sophie

Thompson

Karan

Badhen

10th

February

17th February Sophie

Thompson

Karan

Badhen

17th February

CMP2515: Software Design UG2 Coursework - Team Project

112

Section 2: Analysis and Functionality of System Operations

Task name Description Assigned

team

members

Start

date

Estimated

date of

completion

Completed

by:

Actual date of

completion

Identifying

System

Operations

Use the techniques

discussed in Chapter

6 of the course

notes to identify the
system operations

from the typical

course of events of

the use cases that

you have produced.

Create system

sequence diagrams

for the typical

course of events of

the use cases that

you think most

significant for the

development of the

system. You may

find that you need

to refine or modify

your use cases and

conceptual model

that you have

produced.

Sophie

Thompson

Anne

Oboma

Kevin

Clopon

24th

February

10th March Sophie

Thompson

Anne

Oboma

Kevin

Clopon

 24th March

System

Operation

Contracts

identified

Based on your use-

case model and

conceptual model

that you have

produced write the

contracts for the

system operations

that you have

identified. You may

find that you need

to refine or modify

your use-case model

and conceptual

model while you are

working on the

contracts.

Sophie

Thompson

17th

March

31st March Sophie

Thompson

 7th April

CMP2515: Software Design UG2 Coursework - Team Project

113

Section 3: Use Case Design

Task name Description Assigned

team

members

Start

date

Estimated

date of

completion

Completed

By:

Actual date of

completion

Collaboration

Diagrams/

Object Sequence

Diagrams

The collaboration

diagrams or object

sequence diagrams

(not both) which

show the assignment

of responsibilities to

classes of objects.

Sophie

Thompson

Karan

Badhen

Olukayode

Alatishe

7th April 15th April Sophie

Thompson

Karan

Badhen

Olukayode

Alatishe

 14th April

Use of patterns

regarding the

responsibilities of

classes of

objects

Enough discussion

about the use of the

patterns in your

assignment of

responsibilities to

classes of objects.

Sophie

Thompson

Ho Nam

Tsang

14th April 16th April Sophie

Thompson

Ho Nam

Tsang

The design class

diagrams

The design class

diagrams, which

shows the

methods/operations

of classes.

Sophie

Thompson

Hamza Ali

16th April 18th April Sophie

Thompson

Hamza Ali

CMP2515: Software Design UG2 Coursework - Team Project

114

Section 4: The Report

Glossary

Concept: A concept can be represented in terms of its symbols, intensions and extensions to

show what that concept is.

Class: A class is part of the Object Oriented design framework used to separate differing

concepts so that they are all grouped together, and their attributes and methods can control

the actions of an object instantiated from that class.

Object: An object is an instance of a class, containing its attributes and associations.

Method: A method is a behavioural control mechanism used by a class, to control how

specific objects of that class behave

Attribute: An attribute is a characteristic of a class.

Association: An association is a link between classes that show how they are connected with

each other

Use Case: A use case is a case or a story that occurs when the system is in operation, shows

how certain processes happen throughout the system.

Actor: A person who interacts with the system in one way or another.

Use Case Sequence Diagram: Shows the operations taken place once the system is in use,

and shows how the actors interact with the system.

Patterns: Shows how the users and the system work.

Task Name Description Assigned team

members

Start

date

Estimated date of

completion

Actual date of

completion

Construct the

final

documentation

Add the completed

work of the first

three sections and

add them together

Sophie

Thompson

19th

April

15th April 19th April

Proof-Read the

final document

Proof-read and

check the

document so that

there aren’t any

errors in there

All members 15th

April

17th April 19th April

Finalise & Verify

the document

Everyone decides

whether the final

project report is

ready for

submission

All members 19th

April

17th April 19th April

Submit Project

Document

Submit the final

document to

Moodle.

Sophie

Thompson

19th

April

21st April 19th April

CMP2515: Software Design UG2 Coursework - Team Project

115

