TEAM PROJECT

Software Design

BCU
Rowan Bloomfield, Michael O’Keefe, Samuel Jervis, Ashley
Hussey, Joshua Allen

Team Names /ID’s

Rowan Bloomfield — S12777225
Mike O'Keefe — S12783789
Samuel Jervis — 511712018
Josh Allen — S13173637

Ashley Hussey — S12768787

1|Page

Part 1
Initial discussion

Bvis car hire is a car hiring service as the name suggests which uses a paper
based system to do everything such as: log customer details, car details and
the overall services. Using a paper-based system in such a complicated
business structure can bring many problems, which is why a new system
should be put in place.

Current system

For a car to be hired by a customer using the current system a customer must
register by providing this information: name, telephone number and address,
these details are then filed into the paper system which means they are
registered and free to rent one of the available vehicles.

The next set of details in the system are that of the vehicles, each car will
have these details within the system: registration number which are all unique,
make of car, model of car, engine capacity, hire class and the date of
registration / date of each service, the mileage at each service together with
the name of the mechanic who serviced the vehicle. Again all this data is kept
within the paper based system, each vehicle that the company has needs to
have all this data included before and after each hire, especially the service
and mileage information.

Certain information for the cars need to be updated after every rental such as
the mileage, this is because after every 6,000 miles each car needs to have a
minor service and after 12,000 miles the cars need to have a major service.
The company services its entire car as it has its own garage and mechanics,
which do the jobs services as soon as possible after any rental.

When new customers hire a car all there details are logged onto the hire form
for the car, the details on this form needed from the customer are: name,
address, telephone number and driving license number. To complete the rest
of the hire form further details are needed which are: the ID of the hired
vehicle, the start/end dates of the hire (end date been a estimate and not final
value) and finally the mileage on the vehicle at the start of the hire (needed for
when the vehicle is returned to see if a service is needed). Once the hired
vehicle has been used and returned the final details are added to this form,
which the actual, return date and the end are of hire mileage.

Finally once a vehicle has been returned the daily hire amount is used to
calculate a price for the customer, this must be paid cash only and once paid
a receipt will be provided, once all this has been completed the customer
details must be logged. Certain records are also kept within the company, first
been a record of the hire class of vehicles (daily, weekly, monthly), secondly

2|Page

lzm
Highlight
driving license

is rates of hire which varies per vehicle, finally the garage records for each
mechanic (each mechanic must have a driving license)

System problems

The main and obvious problem with the current system is that it is paper
based; this draws a number of concerns and problems. This car hiring service
collects a lot of data which makes using a paper based system very
dangerous. Customer’s details, car details and mechanic details are some of
the types of data that are kept within the system some of this are very
sensitive data.

One problem with a paper based system is that it makes it hard to back log all
the data, it may be easy to fill out forms but once those forms are filed they
will be very hard to retrieve as time goes on where as a computer based
system wouldn’t have this problem. Another problem could be the safety of
the data a computer can be very easily protected were as files can not only be
stolen but lost within the company (epically if they are not backed up)

Also once cars are returned / need servicing all the data for the car will need
to be calculated by a human then rerecorded which takes a lot of time which
could be spent doing other jobs. These are a few of the problems, which arise
when using a paper-based system for such a complicated business structure.

The way to make complex structures a lot simpler is to add simple systems or
systems that make the structure a lot simpler, this is done by identifying key
areas and building the system around these areas eradicating any problems
stemming from them areas.

New system

The new system should be object orientated as object orientated programs
revolve around using many objects which data which then combine together
to create a bigger program or system, this would work in this instance as this
system will have big classes such as: car, mechanic and customer.

Each class can be an object within the system but each class will break down
into many different sub classes which is where the complexity of the object
orientation comes in, below are examples of how the classes will work in the
new system which will no longer be paper based.

The new system will work the same but there will be a transition from paper
based to a computer based object orientated system, which will work better
for the reasons previously stated. Once this new system is implemented many
things should improve such as: faster and more effective car hires, more
consistency with data and data handling, better customer service and easier
back logging.

3|Page

Records include (Classes and attributes):

o Car - Registration number, make, model, engine capacity, hire class (1-
6), registration date, mileage of service, mechanic, hire history, service
history

e Customer - Name telephone number, address

e Mechanic — Name, address, telephone number, license (required)

Symbol, intention, extension
Example:
e Symbol - Car
e Intention — Car to be hired by customers
o Extension — Ford Focus. LS45 GHT rented by John Jackson with
customerid 1111

Example 2:
e Symbol — Customer
e Intention — Customer wants to hire vehicle
« Extension — The customer John Jackson with customer id 1111 would
like to hire the Ford Focus. LS45 GHT

Objects defining features.

Car
o ldentity = Registration number
« State = make, model, engine capacity, hire class (1-6) , registration
date , mileage of service , mechanic , hire history , service history
o Persistence = registration date, hire history, service history
e Behavior = Interacts with customer class plus mechanic class

=l

4|Page

lzm
Sticky Note
Good motivation of the computerised system. It is desirable to use the five attributes of complex systems in Chapter 3 of the course notes to discuss why OO analysis and design are a good technology option

Part 2

System functions

Here are the system functions which will be used within the new system,
system functions are provided for every section of the car hire and also the

system overall.

Customer sign up function

REF NO Function Category
1.1 Customer gives details | Evident
1.2 Checks if customer is Hidden
already registered
1.3 New customer created | Evident
if needed, ID created
1.4 Customer details stored | Hidden
Car rental
REF NO Function Category
2.1 Car requested Evident
2.2 Car details logged Evident
2.3 Car given Evident
Payment
REF NO Function Category
3.1 Car returned Evident
3.2 Mileage logged Hidden
3.3 Price calculated through | Hidden
hire class etc.
3.4 Payment taken Evident
3.5 Receipt printed and Evident
given
Service
REF NO Function Category
4.1 Car mileage checked Evident
4.2 Given to mechanic if Evident
needed
4.3 Minor or major service | Evident
4.4 Ready for next hire Evident

5|Page

lzm
Highlight
bad naming

System function

Attribute Constraints

Operating system Windows 7 or 8
Payments Cash only

Customer / car / mechanic details Stored within database

System attributes

Rental system

e Order — request from the company to hire one of the cars

e Item —the cars available for hire

e Invoice — a request for payment sent from the seller to the customer
e Account — payment @

6|Page

lzm
Sticky Note
careful about naming of system functions

Part 3, 4 and 5

A use case diagram is a graphic depiction of the interactions among the
elements of a system, in other words it's almost like a flow chart of processes
carried out by actors within a system.

Use case diagrams are used for software design to plan and show what the
main aim of the software is, what processes will be carried out for the
software to function. Use case diagrams usually have 3 main functions which
include Actors, Use cases and the Relationships.

Actors are usually individuals involved in use case diagrams to show the
people involved in the process specified by their roles. For example a
customer would be classed as an actor talking to a shop assistant who would
be classed as another actor.

Actors communicate with the system by sending messages to and receiving
messages from the system. Actors can be human users or a digital
device/computing system.

The use cases are the tasks/roles that are carried out by the actors which are
involved in the process within the system. For example a customer would ask
the sales assistant for a specific item or assistance and that would be a use
case as it is a process being carried out by the actors.

The Relationships are what links the use cases together with the actors.
Relationships are the task that are carried out in the process by the actors
which can be linked to other use cases and actors within the use case
diagram.

7|Page

Calculate Cost
Clwck Car Service
Remove
Register customer Customer

hst Car Hire: Hnswy

Customer Reggw Mechanic System

Register Ca Hie

=

Metharle” o e yesion @

The picture above is our group’s Use Case Diagram used for our team
project. We were tasked with turning a paper based car rental service into a
more modern digital/electronic based service now.

As you can see in our use case diagram we have 4 actors, 3 being human
actors and one being a computer system. It covers the initial interaction from
the customer to the sales clerk handing over details about themselves to
create an account to the mechanic telling the system a car has been serviced
and ready to be used. Everything links back the System Actor which has use
cases direct from the Mechanic and the Clerk but takes the data from the
Customer which then passed onto the Clerk then inputted into the system.

The main use cases in this diagram are Register Customer, Register Car
Hire, Record Service and Payment.

Register Customer is important because the business obviously needs
customers as well as having a record of this person who is renting a car.
Registering a customer to the database makes things run smoother and
easier for the company because if they ever needed to get in touch with one
of their customers regarding a payment issue or checking if they are satisfied
with the car they can easily be found on the system database.

Register Car Hire is also important because the clerk needs to know what

cars are available for new customers or existing when they come to rent a car.
Making a record of every car that is brought into the company is essential.

8|Page

lzm
Sticky Note
-- Log Hire should be a system function, instead of a use case

-- Relation between some use cases should be represented

-- The use case descriptions are required

Record Service is a main use case because the cars need to be checked over
before they are allowed to be rented as it could be dangerous to the customer
and costly to the business. One of the actors in this process is the Mechanic
which deals with everything related to checking the cars thoroughly then
inputting the data in the system if the car is fine or if car has been
serviced/repaired.

Payment is the last main use case in our diagram. The reason Payment is a
main use case is payment is needed for cars to be rented.

All of the Use Cases are clear and concise nothing to difficult to understand,
they are straight to the point no underlying messages. A drawback is maybe
they are too simple where they could be condensed down to have few less
use cases.

9|Page

Part 6
Class diagrams

A Class Diagram is a static view of a proposed software system. They are
used to analyse and design an application and show the responsibilities and
behaviours of a software system. The purpose of a Class diagram is to
specify how the structure of the system will look. Class diagrams show how
the software system will function and how it will be written before any code
has been implemented. Class diagrams are very useful when designing large
systems; they will also show the developer what classes will need to be
created to meet the user requirements of the desired system. The class
diagram will also show what attributes and methods will be needed to create
software systems. The class diagram is the main building block of object
oriented programming. A class diagram is a box that is split into 2-3 sections.
The top section of the box contains the name of the class, which is typed in
Bold and the first letter of each word is a capital letter e.g. ClientDetails. The
second section of the class contains the attributes needed to design the
software. The attributes are left-aligned and letters are typed in lowercase.
The third section of a class diagram will show what methods will be used
while developing the system.

¥y Staff
L L Name : Sting
Type . Sting Car; Car Addess: Sting
Value : Int HireDate : Date SafiD ot
-PayDate : Date Transacton [ReturnDate: Date
Clent: Client HieRate: Int A ﬁ&
Makes Creales
Client
tName Sting Clork Mechanc
e Custonetno:Seg DiingLcsce: Bokan
Address Stnng BookingReques: Sing
Ui Cahalbity: g
-Member [D.: Int 1nvolceDetals: Double
DelveryDate . Int Hicd
ColectionDate: Int
DrivingLicenceNumber : String
(EmilAddress : Strng Performs
TelephoneNumber : Double
Car
Make : String Skt
Node Sting -Car:Car :
Enghe Capacty o I
e s i il Sy
Date of Registration : Date
Date of Senvice : Date
Mieage at Senvice : nt
Mechanic Responsible ! String

10|Page

lzm
Sticky Note
-- Multiplicities are needed
-- the details of services listed as attributes in the car should be in class ``Service"
--

Payment
-Type : String
~Value : Int

-PayDate : Date Transaction
=-Client : Client

Makes

Client

-Name : String

-Age ! Int

-Address : Sting

-PostCode : String

-Member ID : Int

-DeliveryDate : Int
-CollectionDate : Int
-DnivingLicenceMumbser : String
-Emailaddress : String
-TelephoneNumber | Double

In the first section of the above class diagram, the initial process of the car
hire system is shown. The new Client will have to supply details to the
company and make a payment. As you can see, the association between the
two classes is the client making the payment. Once the transaction has been
made the car will be hired to the customer. In the client class, a number of
attributes are being used with the data type string; these are Name, Address,
Postcode, Driving Licence Number and E-mail address. The reason for using
this as a data type is the data will consist of letters and numbers. The
attributes Age, Member ID, Delivery Date, and Collection Date are using the
data type integer as only numbers are required.

11|Page

| Staff
Hire -Mame : String
S -Address : String
-HireDate : Date _StaffiD Int
-ReturnDate : Date I
—|-HireRate : Int i
Creates
Clark
-Customerinfo : String
-BookingRequest : String
Hired -Car Availability : String
=Inwoice Details : Double
Performs

The above diagram demonstrates the next process of the proposed system
for the car hire company. The clerk will deal with all booking requests from
clients and will authorise the hire of the car. In the clerk class the following
attributes and (data types) have been chosen as they are suitable for the new
computer based system.

Customerinfo (String)

BookingRequest (String)

Car Availaibility (String)

Invoice Details (Double

The Hire class contains the following attributes: Car, HireDate, ReturnDate
and HireRate.
A Staff Class has also been created which will hold the details of the clerk and
mechanic. The following attributes and (data types) have been used for the
Staff class.

e Name (String)

e Address (String)

e StaffID (Int)

The hire class will also contain the details of each car as the hire rate will be
dependent on what type of car is hired by the client. When the car is returned
by the client, the actual mileage of the car is recorded and compared to the
estimate and is there is a difference this will be updated and the client will
need to make a cash payment.

12| Page

Part 7
System Sequence Diagrams

The following diagrams are System sequence diagrams of the essential use
cases that we identified earlier on in the project. These diagrams help to
illustrate the events that the actors generate, the orders that they occur in and
any inter-system events for an individual use case. All of these diagrams have
been created using Visual Paradigm.

Register Car Hire:

X X X

Customer Clerk System
1: Request Car
> 2: Check Availability
P
3: Confirm Avail ability
4: Confirm Awvailability
5 Give Details
.' 6: Check Customer is Registered .-
alt) 7: Customer not Registened
B: Ask to Register
n
[el=ze])
9: Confirm Customer Details
10: Create Reservation
P
11: Confirm Reservation
12: Give Car and Reservation Details

This sequence diagram was created for the Use Case: Register Car Hire. This
was agreed to be one of the essential use cases of the design as the whole
business is focused around this interaction. This diagram contains 3 actors,
Customer, Clerk and System. The actor ‘Clerk’ interacts with both ‘Customer’
and ‘System’ however ‘Customer’ and ‘System’ never interact. This is an
intentional design choice as ‘Clerk’ is the only actor in this scenario who will
have access to the system. The sequence is initiated by ‘Customer’
requesting a car from ‘Clerk’ who then has to access the ‘System’ to check
the availability of said car. This is necessary as otherwise the ‘Clerk’ may start
to create a booking then find out part way through the required car is
unavailable which would be a waste of both time and money. If the car is
available this information is shown to the ‘Clerk’ who then relays it to the
‘Customer’, after which the customer is asked to give his details. At this point
the diagram splits into two paths, if the ‘Customer’ is not registered then they
will be asked to register which would start the ‘Customer Registration’ use
case. If the ‘Customer’ is already registered then their details are confirmed
and a reservation is created. The confirmation details are sent from the
‘System’ to the ‘Clerk’ then relayed to the ‘Customer’ which ends the
sequence.

13| Page

lzm
Sticky Note
-- Should not show interactions between Customer and Clerk (Abstraction)

-- Should not in general show display signals from the system to an actor (operations carry input and output parameters and interaction synchronization is that request and return are executed atomically together.

Register Customer:

X X X

Customer Clerk System
1: Request Registration

2: Request Reg Form

3: Send Reg Form

4: Give Details

5: Create Customer

6: Give Customer |D

7. Store Details

This sequence diagram was created for the Use Case: Register Customer.
This was also a potential off shoot of the previous diagram if the customer
was not registered when they wished to rent a car. As such it uses the same
actors from the ‘Register Car Hire’ diagram and they each have the same
level of interaction with each other. This was considered an essential use
case as without being able to register a customer a hire cannot be completed
as the company will have no details of the customer stored. This sequence is
initiated by the actor ‘Customer’ requesting a registration whether this is by
choice or necessity for completing a hire. The ‘Clerk’ then requests a
registration form from the system which is then displayed for them an
improvement over the existing system where they would be required to find a
paper form. The ‘Customer’ then gives them their details which the ‘Clerk’ will
enter into the form to create an account. When an account is created a
Customer ID will be generated in order to keep each account unique, this ID is
then given to the ‘Customer’. Finally the account details are then stored within
the system, again an improvement over the existing system as all records are
stored digitally for increased security and easy access.

14| Page

New Car Registration:

X X X

Car Zalesman Clerk System

1: Send Car Details

2: Create Mew Car Entry

3: Confirm Stoeck Updated

This sequence diagram was created for the Use Case: New Car Registration.
This use case was considered essential as without this operation no new car
stock could be recorded within the system meaning they could not update
their stock. This diagram does not use the actor ‘Customer’ but instead uses
‘Car Salesman’ who is a unique actor for this use case. The sequence is
initiated when the ‘Car Salesman’ sends over the details of the new car to the
‘Clerk’, this is done separately to the actual delivery of the new car ahead of
time in order to be as efficient as possible. The ‘Clerk’ will then use the
‘System’ to either create a new car entry or update the stock total of an
existing car. The ‘System’ will then confirm the stock has been updated to the
‘Clerk’.

Car Return:

X X X

Customer Mechanic System
1: Drop off car

2: Request Rental Details

3: Give Details

4
4: Check returned on time

alt 5. Car Returned late

& Inform Late Fee

7. Inform Late Fee

elzg] |)
8: Car Returned on time

9: Confirm Car Retumed

P
10: Update Stock

This sequence diagram was created for the Use Case: Car Return. This use
case was considered essential as it is a key part of the hire process and

15|Page

without it there would be no way of recording which cars had been returned
and if they were on time or not. The actors used are ‘Customer’, ‘Mechanic’
and ‘System’. The sequence is initiated by the customer dropping off the car
for the mechanic who then requests the rental details from the system in order
to compare with the customers, this adds an additional level of security to the
process. The ‘Mechanic’ then checks whether the car has been returned on
time as outlined in the hire agreement and the diagram splits into two paths. If
the car has been returned late the ‘Mechanic’ notifies the ‘System’ of this,
which in turn informs him of the required late fee. The ‘Mechanic’ will then
inform the customer of this and the car will be returned. If the hire care has
been returned on time the ‘Mechanic’ confirms the return in the ‘System’ and
the stock is updated.

Car Service:

System Mechanic

1: Motify Car needs sevice

>

alt
M 2: Record Completed Service

tlze]
i 3: Record Error with Service

This sequence diagram was created for the Use Case: Car Service. This use
case was considered essential as cars are serviced every 6000 and 12000
miles and servicing is an integral part of the company’s day to day operations.
Despite it being an essential use case it is a fairly simple diagram involving
only the ‘System’ and ‘Mechanic’ actors. The sequence is initiated when a car
has tracked 6000 or 12000 miles and the ‘System’ alerts the ‘Mechanic’ that a
service is required. Then there are two paths, either the service is completed
and the ‘Mechanic’ logs this with the ‘System’ or there is an error and the
service cannot be completed in which case the ‘Mechanic’ still logs this with
the system.

16| Page

Part 8
System contracts

System contracts are essentially a list and specifications of what a certain
function should do. In our examples we have register customer which is
basically what happens when you register a new customer and there are
some different attributes such as the name of the contract this can include
parameters, the responsibilities of said contract, this just what the contract is
responsible for, then we have cross references this is just if it has any
reference with something else in the design such as use cases. Exceptions
are what should produce an error message. The next two are important and
they are the pre-conditions and the post-conditions, the pre-conditions are
what we should have prior the post-conditions such as if you need certain
details or to check if something exists. Post-conditions are what the part of the
contract is supposed to achieve.

Register Customer:

Name: CreateCust

Responsibilities: Enter a customer’s details and add to system. Generate
customer ID.

Cross references: Use Cases: Register Customer

Exceptions: If any field is invalid generate an error

Pre-conditions: Customer Details needed, Registration Form Created
Post-conditions: Customer registered

Name: StoreCust

Responsibilities: Store the newly created customer in the system
Cross References: Use Cases: Register Customer

Exceptions: If no new customer created indicate an error
Pre-Conditions: Customer account must be created

Post-Conditions: Customer.Stored set to true

This contract registers a customer and has 2 parts to it the first part creates
the customer which takes the details and adds it to the system then
generating a customer id, if any field is invalid it will generate an error
message, if all is successful this part will register a customer.

The second part stores the customer into the system, it needs to check that
the customer account exists and if it does it sets a variable to true.

17| Page

lzm
Highlight
Could not find this operation from system use case sequence diagrams

lzm
Highlight
Object creation or attribute modification, but ``amount is an attribute" instead of an object

Car hire:

Name: CreateRes

Responsibilities: Enter Customer details to create car reservation
Cross References: Use Case: Register Car Hire

Exceptions: If customer is not registered indicate an error
Pre-Conditions: Customer.Stored = True, Car.CarAvailable = True
Post-Conditions: Reservation Created

In this contract it controls the car hire for when someone wants to hire a car, it
needs the customers details but if the customer is not registered it will have
an error, it also needs to check if the car is available and if the customer is
stored into the system if this is correct then the reservation gets created.

Registration of new car:

Name: CreateCar

Responsibilities: Enter Car details to create new car object.
Cross References: Use Case: New Car Registration
Exceptions: If no new car details indicate an error
Pre-Conditions: none

Post Conditions: New Car object created

In this contract it registers a new car to the system which takes the car details
to create a new car object, if there isn’t a new car ready to be added it will
create an error, when completed it will create a new car object.

Hire Car Return:

Name: ReturnCar

Responsibilities: Confirm return of hire car

Cross References: Use Case: Car Return

Exceptions: If return date exceeds Hire.Returndate then indicate error
Pre-Conditions: Car.CarAvailable = False, Mechanic.CarDetails = True
Post Conditions: Car.CarAvailable = True, Car.Mileage = Mileage

This contract controls the returning of cars and confirms if It has been
returned this will need to check if the car is available and if the car details are
correct, it will produce an error if the date exceeds the specified return date, if
no error the car gets made available and it logs the mileage.

Car Service:

Name: ServiceCar(String ServiceType)

Responsibilities: Confirm that car has been serviced @
Cross References: Use Case: Service Car

Exceptions: If system has not notified mechanic, no service needed
Pre-Conditions: Mechanic.ServiceType = (ServiceType), Car.Mileage = +6000
|| + 12000 since last service

Post Conditions: Car.Dateofservice = Date, Car.MechanicResponsible =
Staff.Name

18| Page

lzm
Highlight

lzm
Sticky Note
Some basic understanding about contracts of system operations, but there is a need to improve the understanding.

It shows no understanding on teh consistency (or relation between the artifacts)

In this contract it controls if the car has been serviced and takes 1 parameter
which is the service type, there will be an error if the system has not notified a
mechanic because there will be no service needed, the car will be checked
every 6000 or 12000 miles since last service in the end it will log the date of
the service and the mechanic responsible for the service.

Part 9
Object sequence diagrams

An object sequence diagram is an altered version of sequence diagram, the
sequence diagrams show interactions between objects in time sequence as
we have shown earlier in the report . An object sequence diagram takes a
particular section of the system and shows the interactions within that.

Within this car hire system there many functions that are processed for
example: car availability, create new car and car return. An object sequence
diagram can be created for each of these, the diagram will show how each
process is taken out within the system and the order in which it is done in. The
object sequence diagram will also show which object is used within that part
of the system and its involvement.

Below are the created system sequence diagrams from/for the new system for
the car hire business, a diagram has been created for each essential part of
the system showing the interactions between the objects within the system for
that specific job.

19|Page

Car availability

This object sequence diagram shows how the car availability is checked
within the system, as shown in the diagram the objects involved are the: clerk,
car and car availability. The clerk uses the car availability information which is
within the car details to check the car availability.

Cled cEar : Barfueail ability

Clerk : Car : Carfvail ability

I sd Car availability J

I 1: print() !

I
i
sd Loop i
|

L 1.1: check()

I
2 phint()

A

Customer reg check

This object sequence diagram shows how the customer’s registration is
checked, this sequence diagram uses the objects: clerk, customer and
customer list. The clerk uses a request form which checks the customer and
customer list within the system, the answer/reply is then printed back to the
clerk as shown in the diagram below.

Clerk : Customer : Customer List
sd Customer Reg Check /I
Clerk : Customer : Customer List
I I
| 1: request() | sdloop)
1.1: check()

2 print()

20| Page

Create reservation

This object sequence diagram shows how a reservation is created within the
system. This diagram uses quite a lot of objects, it uses the objects: clerk,
hire, hire date and return date. This diagram has quite an easy route as it
doesn’t need loops the whole diagram is pretty straight forward , the clerk sets
the : hire , hire date and return date then created the reservation , the system
then prints the reservation back to the clerk .

Clak : Hire : Hiredate : Retumn [ate

sd CreateReservation)

I
| 1: createnew() |
i -

1.1: set()

1.3 print(}

Create new customer

This object sequence diagram shows how to create a new customer, this
diagram is quite simple the objects used are the clerk and the customer. The
clerk requests the information from the customer which is given back to the
clerk who then logs it to create a new customer within the system.

Cledk : Custamer

I sd CreateNewCustomer)

Clerk : Custormer

I I
I 1: createnaw() I

|

| 1.1: print()

i

21|Page

Create new car

This object sequence diagram shows how a new car is created, this is very
similar to the create new customer diagram except the object used are
obviously clerk and car. The clerk collects and adds all the details for the new
car into the system which is then saved to create a new car within the system.

Clerk s Car

Clerk Car

sd CreateMewCar)

[[
| 1: createnaw() |

|

| 1.1 print()

i

Car return

The next object sequence diagram is for the car return section of the system.
The object involved within this diagram are: mechanic, car and car available.
The mechanic checks the details of the car within the system, the car
availability is within the car details this is then sent back to the mechanic. Not
only can the mechanic check the available cars but the mechanic can set the
availability of the car by setting the car details within the system which
changed the car available option within the car object.

Mechanic :Car :Carfwailable
Mechanic : Car . CarAw ailable

1: ¢check()| =d b-:;p]

|
I
|
|
|
1.1: printf) }
|
|
I
|

I sd CarReturn J

-

2 zet()

2.1: settrue()

3: print{)

22| Page

Record service

The final object sequence diagram is for the record service, this diagram uses
the: mechanic, service and service type objects within the system. As shown
in the diagram the mechanic sets the service and the service type (minor or
major) which have been done on the car this is then confirmed to the
mechanic once done via print.

Mechanic :Senice :Senice Type

[

sd RecordService

I 1: set() I

1.1: set()

2 print{)

23|Page

Part 10
Patterns

Throughout the design several patterns have been identified and used in the
creation of the diagrams. Patterns are the general principles used to guide the
creation of software and each of them describe a problem to be solved and a
solution to the problem.

The first type of pattern used was the ‘Expert’ pattern. This pattern is assigning a
responsibility to a class that has the information necessary in order to fulfil the
responsibility. This is evident in our work in several classes in our class diagram.
For example in order to complete a hire the ‘Hire’ class gets information from the
‘Car’ class attributes such as availability and hire class. Without these a hire
could not be completed as the required details would not be available.

Another pattern used was the ‘Creator’ pattern. This pattern is when one object
is responsible for the creation of another object. Again like the ‘Expert’ pattern
this is used frequently within our designs. For example the ‘Client’ class creates
the class ‘Payment’. Without the ‘Client’ class ‘Payment’ would not exist and
there would be no way to complete the hire transaction. In a similar way to this
the ‘Hire’ class would not be created without the ‘Clerk’ class.

The ‘Low Coupling’ pattern has also been used. In this pattern the object is to
assign responsibility but with the lowest possible coupling. In our designs this
describes the interaction between the ‘Client’ and ‘Payment’ classes. ‘Client’ is
only responsible for the creation of the ‘Payment’ class which reduces the
number of dependencies on ‘Client. In contrast to this the ‘High Cohesion’
pattern is assigning responsibility whilst cohesion remains high. This is shown in
our diagrams with the ‘Hire’ class which is responsible for the use of the ‘Car’
class and the ‘Payment’ class after being created by the ‘Clerk’ class.

Finally the ‘Controller’ pattern has also been used. An example of its use is the
‘Car’ class. This is because when a new car is registered it has to accept input
from external actors. It is also representative of the business as a whole because
without the ‘Car’ class the business itself could not exist.

24 |Page

Part 11
Design class diagram
We previously had a conceptual class diagram which was explained previously.

This is the design class diagram it is similar to conceptual class diagram but has
methods and operations.

<<usa>>

T ~ crestes

' AR

' hTe

'

'

'

'

'

'

'

quse)-b

uses

'
'
'
| <<usa>
i parforms
'
'
'

Each of the classes has methods and the client class has these methods

Method: setName()
Purpose: Sets the name of the client.

Method: setAge()
Purpose: Sets the age of the client.

Method: setAddress()
Purpose: Sets the address of the client.

Method: setPostcode()

25|Page

Purpose: Sets the postcode of the client.

Method: setID()
Purpose: Sets the ID of the client.

Method: setEmail()
Purpose: Sets the E-Mail of the client.

Method: setNum()
Purpose: Sets the number of the client.

Method: regCustomer()
Purpose: Registers the customer into the system.

Method: deregCustomer ()
Purpose: deregisters the customer from the system

=tatal)
=subtotal)

Method: total()
Purpose: Calculates the total of the payment.

Method: subtotal()
Purpose: Calculates the subtotal of the payment.

+nawHira()
+satlangthl)
+salRata()

[A
Method: newHire()
Purpose: Creates a new hire object.
Method setLength()
Purpose: Sets the length of the hire duration.
Method setRate()

Purpose: Sets the rate of the hire.
+craatePayment)
+ragCustoman)

Method: createPayment()

Purpose: Creates a payment object.

Method: regCustomer()

Purpose: Registers the customer to the system.

+satMamel)
+sat| D)

Method: setName()
Purpose: Sets the name of the staff.

Method: setID()

26| Page

Purpose: Sets the ID of the staff.

+craataSarvical)
+satCarfuail])

Method: createService()
Purpose: Creates the service check.

Method setCarAvail()

Purpose: Sets the CarAvailable variable to true in the Car class.

[#recsandcar)
-+t Sarvica()

Method: recService()
Purpose: Records the service and what happened.

Method: doService()
Purpose: Does the service to the car.

+nawCar()

+oparation)
+ sl fvil])

+gativail)

Method: newCar()

Purpose: Registers new car into the system.
Method: setAvail()

Purpose: Sets the car to available.

Method getAvail()

Purpose: Gets if the car is available or not.

27| Page

The client makes the payment which is shown on the design class diagram.

Hire class uses the car class to determine what car is going to be used.

28| Page

The clerk uses the hire class t'c‘)' allow

Clerk

Car

-Maka : String

Modal : String

_Engina Capacity : Int

-Hiira Class : Int

-Date of Ragistrafion : Dala
-Date of Sarvica : Dala
Miaage al Sarvica © Int
Machanic Responsible © String
-Carfvail | Bool

=nawCar)
+aperation()
= satdvail)
-+ tAuail]

the customer to hire a car.

Service

-Car : Car
-Machanic | Machanic
-Sarvice Typa : String

+racSanical)
+doSanvical)

The service class uses the car class to determine what car and type the service

will be.

Conclusion

We have successfully used extensive software design tools to completely change
the car hire system. The system had many problems as a paper based system
which have addressed using various different techniques, this has led to the new
to the new computer based system which we have shown all the diagrams and
write up for in the above report. We have worked as a five man team to create
this new system combining individual work and combined meetings to complete

the work load.

29| Page

Team diary

Meetings

Week What was done Attendance

1 Overviewed the Rowan , Mike , Samuel
coursework ,Josh ,Ashley
requirements then
discussed each section

2 Created a rough Rowan , Mike , Samuel
template for parts 1 and | ,Josh ,Ashley
2 in a note format on
word

3 Started on the use case | Rowan , Mike , Samuel
diagrams for the new ,Josh ,Ashley
system

4 Started on the class Rowan , Mike , Samuel
diagrams for the new ,Josh ,Ashley
system

5 Started on the system Rowan , Mike , Samuel
sequence diagrams ,Josh ,Ashley

6 Created the contracts Rowan , Mike , Samuel
based on the new ,Josh ,Ashley
system

7 Split up the write up Rowan , Mike , Samuel
into sections for each ,Josh ,Ashley
group member

8 Put all the Rowan , Mike , Samuel
documentation and the | ,Josh ,Ashley
diagrams together plus
finalized the
coursework

30| Page

Individual input

Name

Individual input

Rowan Bloomfield

Attended all group meetings plus
done the write up for parts 1 and 2 ,
finalized the initial brief and the
system functions also put all the
documentation together for the final
upload

Mike O’Keefe

Attended all meetings plus done the
final write up for part 7, also finalized
the system sequence diagrams.
Created most of the diagrams
throughout the coursework using
UML

Samuel Jervis

Attended all meetings plus done the
final write up for parts: 3, 4 and 5.
Finalized the use case diagrams for
the final documentations

Josh Allen

Attended all meetings plus done the
final write up for parts 8 and 11.
Created all the contracts based on
the use cases previously created
also finalized the design class
diagrams for part 11.

Ashley Hussey

Attended all meetings plus done the
final write up for 6. Finalized all the
class diagrams for the final
documentation.

31|Page

