
Undergraduate Programme
Academic Year
2014 – 2015
Coursework: Team
Project
Module: CMP2515 Software Design UG2
School: Computing, Telecommunication and Networks
Module Co-ordinator: Professor Zhiming Liu
Setup Date: 20/02/2015
Submission Date: 22/04/2015

Team Leader: Callum Clarke

Team Members: Bobby Carver, Connor Bradley, Rhys
Armstrong, Barham Khalil Ali, Mohamed Camara

Part 1: Requirements Understanding and Analysis

The Bvis Car Hire Company project that was designated concerns a car hire company that

handles all of its data storage, including details of customers, employees and vehicles in the

company fleet, using a completely paper-based system. In the modern day, where

everything is computer-based in order to improve efficiency of work, reliability of data and

overall professionalism of a business, this is a very archaic way of doing things. As such, our

team needed to discuss the operation of this company and why using an object-oriented

program design is applicable.

The most glaring point of all is of course the fact that object-oriented programming has

become an absolutely massive force in the world of software; almost all programming

projects today use object-oriented design over a procedural design, due at least part to the

fact that this approach allows for much easier expansion, editing and maintenance of a

program. This is especially true of projects such as this one where clearly defined classes are

easily identifiable; hire, vehicle, and operator – these all would work extremely well with an

object-oriented design, because it would be simple to find properties and responsibilities for

all of these, including but not limited to the daily hire rate of a particular vehicle, the

starting date and cost of a hire, and so on. These data could easily be applied to an object-

oriented design.

With this fact now identified, the basic operations that are required of the company system

are listed here –

1. Register a new customer.

2. Record that a particular car has been hired.

3. Record that a particular car has been returned.

4. Calculate the cost based on the daily hire rate.

5. Display the appropriate details and print out a receipt.

6. Log a completed hire.

7. Record a service for a particular car, together with the date of the service, the type

of the service and the name of the mechanic responsible.

8. Remove a customer.

9. Add a new car to the fleet.

10. Delete a car that is no longer in the hire fleet.

11. Add a mechanic who has joined the company.

12. Remove the details of a mechanic who has left the company.

13. Determine if a particular car is due for a particular service.

14. List the information about all hires for a specified car.

15. List the information about all services that a specified car has had.

批注 [ZL1]: A discussion is desirable about how the five
attributes of complex systems apply to this project, such as
being decomposable, evolving, intra- and inter-interactions
of objects, etc

Thinking about these required functions, use cases were identified by the team as follows.

Use Case Register a New Customer

Actors New customer, Operative

Purpose Add a new customer’s details to customer
database system.

Overview New customer wishing to hire a car goes to the
Bvis outlet and enquires with a sales assistant.
The assistant takes their name, phone number
address and driving licence number and adds
these details to the database.

Use Case Hire Car

Actors Operative, Current Customer

Purpose Log the fact that a car has been hired out

Overview Existing customer chooses a car and the hire
start date, hire end date (estimate) and starting
number of miles on the clock are recorded.

Use Case Return Car

Actors Operative, Current Customer

Purpose Log the fact that a car has been returned

Overview Existing customer brings back a hired car, and
the actual return date and mileage are
recorded.

Use Case Calculate Hire Cost

Actors Operative

Purpose Calculate total cost of hire based on daily hire
rate

Overview The hiring cost of the car is calculated based on
the daily hire rate of that car.

Use Case Log Completed Hire

Actors Operative

Purpose Add hire details to company records

Overview Record customer details, beginning and end
date for hire, and payment costs and adds them
to the company’s records.

批注 [ZL2]: just Customer -- ``new’’ or ``current” are about
the state of a customer

批注 [ZL3]: ``data system” is a design decision not a
requirement

带格式的: 突出显示

批注 [ZL4]: just Customer

带格式的: 突出显示

Use Case Display/Print Details

Actors Operative, Existing Customer

Purpose Display details of hire period, including hire
time, cost etc.

Overview Details stored in the system are displayed on a
screen for the operative to show to the
customer, then a receipt is printed out
containing the same details.

Use Case Check mileage

Actors Operative

Purpose Check car mileage to see if it needs a service

Overview The operative checks to see if there has been
6000 or 12,000 miles since the last service and
then if so, send the car off for a minor or major
service respectively.

Use Case Record Service

Actors Operative, Mechanic

Purpose Log the details of a service

Overview The type of service, the date of the service, the
car it was performed on and the name of the
mechanic who performed it are all logged in
the company records.

Use Case Remove a Customer

Actors Operative, Existing Customer

Purpose Remove a customer’s details from the company
records

Overview If a customer has not used the car hire service
for some period of time, then their details are
removed from the company records.

Use Case Add new car to fleet

Actors Operative

Purpose Add the details of a new car to the company
records

Overview When a new car is brought in to the company’s
fleet, the registration number, make, model,
engine capacity, hire class, mileage date of last
service and who performed it and date of
registration are all logged and added to the
company records.

Use Case Remove car from fleet

Actors Operative

Purpose Delete the details of a car that is no longer in
the company fleet from the company records

Overview If a car is no longer in the company fleet then
its details will be removed from the company
records.

Use Case Add a new Mechanic

Actors Operative, New mechanic, Manager

Purpose Log the details of a new mechanic to the
company records

Overview Operative checks if the new mechanic has a
valid driving licence, then if so their name,
address and home telephone number are
added to the company records. The manager
checks if the mechanic‘s details are unique, and
if not, makes a note of this and gives an alias
for that mechanic.

Use Case Remove an existing mechanic

Actors Operative

Purpose Delete the details of a mechanic from the
company records

Overview If a mechanic leaves the company, then their
details are removed from the company records.

Use Case List hiring history/information

Actors Operative

Purpose Show the hiring history of a particular car

Overview The operative brings up the entire history for all
the hires a particular car has had.

Use Case List service history/information

Actors Operative

Purpose Show the service history of a particular car

Overview The operative brings up the entire history for all
the services a particular car has had.

These use cases were then expanded on by the team (the workload was split out evenly in

order to increase efficiency). The expanded use cases, as the name suggests, expand upon

the top-level use cases by adding details of what should happen and in what order when a

particular use case needs to be executed by the system – this involves detailing what the

typical course of events is from the actor’s point of view and how the system should

respond, without going too deep into the inner workings. Alternate courses for if the events

move away from the typical course are also taken into consideration. The expanded use

cases are shown below –

Display/Print Details

Typical Course of Events System Response

1. This use case begins after an existing
customer has paid for the car rental.

2. The operative uses the company
records to display the rental
information to the existing customer.

3. The system displays the Customer
details, beginning/end hire dates &
payment costs for the customer to see.

4. The operative then prints a receipt for
the existing customer.

5. The system generates and prints a
receipt.

6. The customer leaves with the details of
the rental.

Alternative Course:

Line 5: Printer is out of paper/broken, no receipt is printed. Replace paper/printer.

Add New Mechanic

Typical Course of Events System Response

1. This use case begins when a new
mechanic is hired

2. Operative checks if the new mechanic
has a valid driving license

3. The operative then records the new
mechanic’s personal details.

4. Name, address & telephone number is
added to the company records.

5. The manager checks if the new
mechanic’s details are unique and if
not makes an alias on the system.

6. (If the new mechanic’s details aren’t
unique) then the system will be
updated.

7. New mechanic is hired. logged

Alternative Course:

Line 2: If no valid driving license, the mechanic cannot be hired. Terminate hiring process.

批注 [ZL5]: The above part of the report show quite good
understanding of the concept of use cases, good
presentation of high level use cases. Try to avoid design
details such as `database system’

批注 [ZL6]: why is this not part (or a sub-use case) of a
larger use case such as `Return Car’ (or Complete Hire)

批注 [ZL7]: remove

批注 [ZL8]: Better to state as ``a new mechanic is created,
and the names, address &phone number” of the mechanic
are set as provided in the details

批注 [ZL9]: should be alternative course of events

List Service History and Information Log

Typical Course of Events System Response

1. This use case begins when the
operative checks one of the car’s
service history

2. Operative searches the system for a
specific car and displays it’s service
history

3. Service history is displayed.

4. Operative can now end the search.

Alternative Course:

Line 2: Details are entered incorrectly/the details entered do not exist in the company records.

Restart the search process.

Log a Completed hire

Alternative Course:

Line 1) A different customer returns the car. In this situation the operative takes the original

customer’s details.

Line 2) The system is down. The operative will have to write down the customer’s details on paper

and inputs the data when the system is back online.

Line 4) If the details entered are duplicates (i.e. the car hire has already been marked as complete)

the operative will take the car keys and not enter the completion into the database as it already

exists.

User Action System Response

1. The operative takes the customers
details previously stored in the
database upon registration, along with
payment costs, start dates and end
dates (all previously collected in past
use cases).

2. The System outputs the data for the
operative to use.

3. The operative then enters the details
into the database and marks the hire
complete, allowing for that car to be
hired again.

4. The system checks that there are no
duplicate entries which could cause
errors.

 5. The system then marks the hire as
complete within the database.

Record a Service

Alternate course:

2) The system is down. The operative will have to write down the service details on paper and input

the data when the service is back online

3) If there are any errors with the input such as letters in cells that should be integers the system will

display an error message and ask the operative to correct/check the data.

Register a New Customer

Typical Course of Events System Response

1. Use case begins when a new, non-registered
customer arrives at the Bvis outlet who wants
to hire out a car, so they speak to an operative
at their work station.

2. The operative then takes the customer's
details, and adds them to the company's
database.

3. The new customer's phone number, address,
name and driving licence number are added to
the database. The system responds by
presenting this information back to the
operative to confirm its correctness.

4. The operative tells the system that the details
are correct and the new customer's details are
saved and registered to the company records.

5. The system saves the recorded details
permanently into the records at this point.

Alternate Course:

Line 2: If details are entered incorrectly (such as in the incorrect format or data type) the system will

ask the operative to correct/check the data.

User Action System Response

1. The mechanic tells the operative details of
the service. The details include date of
service, car it was performed on
(registration number), the mechanic who
carried out the service's name and any
notes that could be of interest (i.e. faulty
parts, known damages etc...).

2. The operative enters all of this data into
the database which will be used to check
when the next service will be due, hold the
mechanic responsible if the service was
not done correctly and to have a long list
of service history when the car is no longer
of use to the company and is sold on.

3. The system checks for the correct value
type (such as integer, date etc…).

 4. The data is then stored in the systems
database.

Line 5: If the system is down at the time when the data is saved, then the operat5ive will have to

write down the details on paper and enter them later.

Remove Car from Company Fleet

Typical Course of Events System Response

1. An operative is told by either a mechanic or
another operative that a car is being removed
from the company fleet.

2. The operative uses his workstation to remove
the vehicle's details from the database, in this
case using a system operation to do so.

3. The system deletes the vehicle's records and
details, including registration number, mileage
and from the fleet database.

Calculate Vehicle Hire Cost

Typical Course of Events System Response

1) Daily car returned 2) Car returned recorded

3) The operative calculates the total
cost

4) The system calculates the total cost of
the hire based on the daily rate

5) The operative tells the total cost of
the hired car to the customer and tells
the customer can only pay by card

6) Customer gives cash payment
possibly greater than the total cost

7) Operative records the cash received
amount

8) System displays balance due back to the
customer.

9) Operative keeps the cash and give
back the balance owed to the customer

10) System records the date of the
payment then prints out the receipt.

Alternative course:

Line 4: Customer doesn’t have the cash required, the sale cannot be completed. The

customer has to get cash out from a nearby machine in order for the sale to be completed.

Add New Car to Company Fleet

Typical Course of Events System Response

1) Starts when a new car is brought

2) Operator checks the last usage and
registration date of that new car

3) System the last performance of the
usage and registration of that new car

4) Operator inputs the registration
number, model, engine, hire class and
mileage

5) The system records the each details of
the new car and make it is ready to go

6) The operator assigned the mechanic
responsible for the new car

7) The system keeps in records the last
name and first name of the mechanic.

Alternate course:

Line 4: If data entered is incorrectly formatted, then the system will ask the operative to re-

enter it.

Hire Car

Typical Course of Events System Response

1) Use case begins when the Operative uses
the computer to show the customer the
cars and tells the operative for what
starting date, ending date and he will check
the current mileage on the car.

2) The operative then takes the details,
and adds them to the company's database.

3) The type of car, the starting data and
ending data and current mile age, are
added to the database. The system
responds by presenting this information
back to the operative to confirm it.

4) The operative reviews the details on the
system for correction and then they are
saved on the company records.

5) The system saves the recorded details
permanently into the records at this point.

批注 [ZL10]: English is not clear

批注 [ZL11]: what details?

批注 [ZL12]: avoid design details

Remove a Customer

Typical Course of Events System Response

1) Use case begins when the Costumer
haven’t user this Company for some period
of time for instance a year. Then the
company decides to remove the details of
those customer from their system.

2) The operative logs on to the computer
reviews which customers haven’t used
there company to hire a car then clicks on
the delete button to delete the customer’s
details.

3) The system response to the Operatives
decision and deletes the customers details
of the system

4) The operative reviews the systems once
again to make sure the details of the
customers is removed.

5) The system well no longer show any
details under that detail.

It helps then to visualise these expanded use cases, including what actors are involved in

each business transaction and what use cases are related to each other. Pictured below are

the use case diagrams created by this process.

批注 [ZL13]: The expended use cases presented above
show reasonable understanding of how interactions
between customers. However, the understanding of the
relation between use cases, and the execution of the
interaction operations are mostly on input and output
technology/mechanism, such as who to ``print” or
“ display” . Focus should be on changing of system states.

As can be seen, the use cases were grouped based on what actors are involved – sometimes

there are more than one, but many of them only require the operative to take any action.

Having identified the key use cases and expanded upon them, the system workings can start

to be identified at a slightly lower level. Pictured here is the conceptual class diagram for the

system, which details how the use cases identified can be related to one another, including

concepts of multiplicity and specialisation.

Some classes already have some attributes identified – this is to be expected. As stated

earlier in this report, some elements of the system are noticeable immediately, such as the

date of a service or the make and model of a vehicle. As progress is made in the design of

the system, this diagram was likely to become outdated in terms of some of the properties,

relations and even some of the identified classes shown. These changes can be represented

批注 [ZL14]: Use case diagrams are quite good, though
could be improved

批注 [ZL15]: Classes, associations, and attributes are quite
good. The understanding and use of generalisation-
specialisation relations and aggregations are good. But
several multiplicities are not right

in lower level diagrams later in development, as those changes arise. Also it should be noted

that some changes had to be made to the expanded use cases above after this diagram was

finalised by the team, as some relations and other properties were not possible with regards

to how they were described at that time.

Part 2: Functionality Analysis of System Operations

Following on from the above conceptual class diagram, the relationships between classes

has been established, at least to some extent, as well as some properties of potential classes.

To follow from this, the internal workings of the system can be discussed further. To start

with, members of the team were assigned each some of the more important use cases,

agreed on by the group, to create system sequence diagrams for. These diagrams represent

a more in-depth view of how the actors involved in each system transaction would interact

with the system and how it could respond.

Also included with each diagram are the contracts of the methods shown – these represent

what state changes should be made as a result of the method being called or invoked, as

well as what the overall responsibilities of that method or function are.

where is Outlet in your class diagram? or

You need to explain so that this class will be added into the design class diagram

Add New Car to Fleet - Contracts:

Name: InputDetails ()

Responsibilities: it inputs all the details of the new car which included the registration

number, model, hire class, last mileage, engine capacity and the make

Cross references: Use case: Add new Car

Exception: if the few car details are missing, indicate an error

Pre-condition: promptsDetails () is valid

Post-condition:

 If a new car is brought, a add new car is created

 When a new car is brought, the add new car details as (the registration number,

model, hire class, last mileage and make) are associated to the Outlet

Name: ValidateCarDetails ()

Responsibilities: confirms that the new car details are right and proceed to make the car

ready to be hired

Cross references: Use case: Add new car.

Exception: if the few car details are missing, indicate an error

Pre-condition: inputRegnumberModelHireClass () are inputted

Post conditions: The vehicle’s details are validated by confirming with the operative that

they are correct

 The vehicle’s records were committed to the company records

批注 [ZL16]:

批注 [ZL17]: what is this?

批注 [ZL18]: what does ``add” mean hear?

批注 [ZL19]: why not validate before create a new car?

批注 [ZL20]: This is not precise – new objects created, new
links formed (or old links removed), or attributes of objects
modified?

Record a Service - Contracts:

Name: recordService (regNo)

Responsibilities: This operation identifies a car from the database with its unique

registration number.

Cross reference: Use case: Record a service.

Pre-conditions: A rental car has had a service which needs to be logged into the system.

Post-conditions: runs method: enterServiceInfo. New service created, assasiated with the

unique vehicle.

Name: enterServiceInfo (date, mechanic, notes)

Responsibilities: This operation updates the system with the details of the service that has

been performed.

Cross reference: Use case: Record a service.

Pre-conditions: method: updateService has been ran and a registration has been entered

Post-conditions: Service information updated. Returns next service date.

Name: finishUpdate()

Responsibilities: exits the system.

Cross reference: Use case: Record a service.

Pre-conditions: N/A

批注 [ZL21]: ?

批注 [ZL22]: why is this not part of the recordService()

Post-conditions: Exits the system.

Return Vehicle – Contracts

Name: returnVehicle()

Responsibilities: After the hire is completed, log the fact that the vehicle is now available for

hire again

Cross reference: Use case: Return Vehicle

Pre-conditions: The vehicle in question is currently on hire

Post-conditions: The vehicle’s status was set as ‘available’

Name: calculateCost()

Responsibilities: Calculate the final cost of the hire based on the duration of the hire, the

daily hire rate of the vehicle and the change in mileage of the vehicle.

Cross reference: Use case: Return Vehicle

Pre-conditions: The vehicle in question has been hired for a period of time and then

returned

Post-conditions: The total cost of the hire was calculated

The total cost of the hire was displayed to the operator

批注 [ZL23]: This is not a ``condition “ on state

Name: payForHire()

Responsibilities: Tell the system and log in the company records that the hire has been

successfully paid for.

Cross reference: Use case: Return Vehicle

Pre-conditions: The vehicle’s total hire cost was calculated successfully

Post-conditions: After payment was made by the customer, the payment of the hire was

logged as complete

Name: completeHire()

Responsibilities: Finalise the completion of the hire by logging it as complete and logging the

vehicle as available

Cross reference: Use case: Return Vehicle

Pre-conditions: The vehicle has been hired and returned

Post-conditions: The hire status was set as complete

 The vehicle status was set as available

Hire Vehicle – Contracts

Name: initiateHire()

Responsibilities: Create a new hire

Cross References: Use case – Hire vehicle

Pre-conditions:

Post-conditions: A new hire object was created

Name: checkAvailability(RegNo)

Responsibilities: Check whether or not the registration number entered belongs to a vehicle

that is available for hire

Cross References: Use case – Hire vehicle

Pre-conditions:

Post-conditions: The system identifies whether or not the vehicle is available, and if so

continues with the hire process

Name: enterHireDetails(RegNo, StartDate, EndDate, CustomerName)

Responsibilities: Confirm the details of the hire including start and estimated end date

Cross References: Use case – Hire vehicle

Pre-conditions: A hire has already been created

Post-conditions: The properties of the hire were changed to match the customer’s

requirements

 The hire was associated with the customer

Name: beginHire()

Responsibilities: Confirm the hire details with the operative and log the hire to the company

records

Cross References: Use case – Hire vehicle

Pre-conditions: A hire has been successfully created with no errors

Post-conditions: The vehicle status was changed to unavailable

 The hire was logged as in progress in the company records

 The hire was associated with the vehicle being hired

Add a New Customer – Contracts

Name: createNewCustomer

Responsibilities: Create a new customer for editing and committing to the company records

Cross References: Use case – Add a New Customer

Pre-conditions:

Post-conditions: A new customer object was created

Name: editDetails

Responsibilities: Add the customer’s actual details to the object created

Cross References: Use case – Add a New Customer

Pre-conditions: There is a Customer object that can be edited

Post-conditions: The customer’s details were altered to what the customer has told the

operative

Name: commitToRecords(this)

Responsibilities: Finalise the new customer’s details and add them to the company records

Cross References: Use case – Add a New Customer

Pre-conditions: The new customer’s details are correct and the attributes of the customer

object are set to these values

Post-conditions: The customer object was added to the company records

Part 3: Use Case Design

With these artefacts complete, the design for the system itself can begin. This is the point in

development where design patterns are used; the expert, creator and controller patterns

are the most commonly used in this project. For example, what class should be responsible

for creating a new hire? Using the creator pattern, we can determine that the best choice

for this would be the workstation class, using both the fact that the hire is closely used by

the workstation and that the workstation records instances of them (indirectly, as it logs the

hire to the company records).

Another instance of the use of design patterns in the project was the use of the expert

pattern, the most common of all the design patterns. Though clearly this pattern is used all

over the project because of its range of uses, but one of the clearest instances of its use

would be when the team needed to determine what class should be responsible adding all

the details of new vehicles, mechanics and hires to the company records? The solution,

using the expert pattern, was the workstation, since this was the class that is most used by

the operators at Bvis, and hence should have access to all the information necessary for the

running of the company. All the classes – hire, vehicle and so forth – were then associated

with the workstation directly or indirectly in order to follow this pattern.

批注 [ZL24]: Part 2 shows the understanding of use case
sequence diagrams, the modelling notation, and system
operations, but the understanding of contracts of operations
need to be improved

It should be noted that there is some disparity between the object sequence diagrams

shown here and the final design class diagram later in the report with regards to things such

as naming conventions and some relationship structures – this is due to the team deciding

that some of these were incorrect or needed to some editing, so the names of some

methods or attributes were changed for the final diagram.

The important use cases chosen from before were chosen for further expansion into object

sequence diagrams, which show how the internal class-based components of the system

should interact with each other during the operation of these use cases.

Object Sequence Diagram – Hire Vehicle

Object Sequence Diagram – Add New Car

批注 [ZL25]: This is a quire good object sequence diagram

批注 [ZL26]: 1.1. should``createVehicle”, but in general,
validate should be performed before create as otherwise the
created instance should eb removed again if validation fails.

Object Sequence Diagram – Record a Service

Object Sequence Diagram – Log Completed Hire

批注 [ZL27]: good

Having completed these diagrams, the final step in the design phase is the design class

diagram. Essentially, this is an extended and updated version of the conceptual model from

above in the report, having added further attributes and now introduced the methods (or

modified versions of them) determined in the above diagrams and through other means.

The naming conventions were also refined in order to conform more common programming

conventions, such as camel-case method names, etc.

Final Design Class Diagram for Bvis Car Hire Company System

批注 [ZL28]: Quite good design from the requirements
artefacts. However, the requirements could be improved
with the feeadbacks of design. Consistency discussion, using
of design patterns are not well discussed

Appendix

Glossary of terms

Multiplicity – the concept of how many of one class can interact with another, for example a

many-to-one relationship or a one-to-one relationship.

Specialisation – When one class takes on the properties of another but adds its own unique

ones, using the principals of inheritance from object-oriented programming.

Operative – The employee at the Bvis Company who performs a wide range of tasks

including hiring out cars and adding a new mechanic to the company records.

Exception – Something that does not follow the predetermined course of actions and could

cause an error to occur in the system.

Conceptual – The high-level form of something that can be refined later using various design

techniques.

Team meeting schedule

Week,
Date

Attendees Activities Complete?

1, 27/01/15 Callum, Rhys,
Ali, Bobby,
Connor

Establish group connections/communications.
Discuss current company processes. Identify and
create top-level use cases based on the user’s
needs.

Yes

2, 3/2/15 Callum, Ali,
Bobby, Connor,
Mohamed

Complete establishing basic use cases. Assign use
cases to each group member to expand upon.

Yes

3, 10/02/15 Callum, Ali,
Connor, Bobby,
Rhys, Mohamed

Expanded use cases completed, discuss possible
improvements to these and then unify them to a
single document. Discuss use diagram and prepare
to use team viewer and Visual paradigm tools to
create it over the internet in real time.

Yes

4, 17/02/15 Ali, Mohamed,
Bobby, Connor

Start on use case diagrams, complete alternate
courses of action for all use cases.

Yes

5, 24/02/15 Callum, Bobby,
Mohamed, Ali

Continue/complete use case diagrams, including
relations between actors and use cases as well as
relationships between use cases. Plan for
conceptual class diagrams.

Yes

6,
03/03/2015

Callum, Ali, Rhys Use case diagrams completed, continue work on
conceptual class diagrams and models.

Yes

7,
10/3/2015

Callum, Ali,
Rhys,
Mohamed,
Connor

Review conceptual model, identify which require
system sequence diagrams and begin work on
them.

Yes

8,
24/03/2015

Callum, Bobby Continue work on system sequence diagrams and
use case contracts

Yes

9,
13/04/2015

Callum, Bobby,
Mohamed, Ali,
Rhys, Connor

Finalise system sequence diagrams and contracts
then begin work on object sequence diagrams

Yes

10,
20/04/2015

Callum, Bobby,
Mohamed, Ali,
Rhys, Connor

Finalise object sequence diagrams, then complete
class design diagram and final report

Yes

