
 SOFTWARE QUALITY

METICS

What should be measured?

Product Quality

 Software Quality

Process Quality

 Product Quality

efficiency

 Product Quality ?

code size

maintenance

 Recent studies have reported that something like 70%

of total software cost is devoted to maintenance

o This is therefore a major quality consideration

Maintenance and Product Quality Factors

 Two types of Maintenance each reflecting software

quality factors:

1. Changes required because customer not satisfied

 with the system delivered.

 Quality Factors

 CORRECTNESS:

 Ability of software to exactly perform

its tasks,

 as defined by the Requirements

Specification

 ROBUSTNESS:

 Even if the system performed exactly to

the

 Requirements Specification, given the

lack of

 formal specification techniques, there will

always

 be situations that the specification does

not cover.

 Ability of software to function in

abnormal

 conditions.

 e.g. In the case of certain Hardware

Failures, the

 software should report the failure

and

 proceed with reduced

functionality.

2. Changes required because World changes

 Quality Factors

 |

 EXTENDIBILITY:

 The ease with which software

 products may be adapted to

changes of

 specification.

Process Quality - Development

 Studies have revealed software costs to be running in

the region of 60- 70% of total production cost.

 In general software lacks REUSABILITY

 Ability to be reused, in whole or in part, for new

 applications.

Conclusion

 With the dramatic reduction in hardware costs the

following issues now dominate the software

development process.

1. Quality of product

 |

 |

 |

correctness

 Maintenance

robustness

extendibility

2. Quality of process

 |

 |

 |

 Reusability

 These quality factors are not well understood at the

moment.

 We need to consider the nature of design to enable at

least the classification of features that may affect

these factors.

 NATURE OF DESIGN

Modularity

 It was recognised early on that large monolithic

designs rarely produced quality systems.

 Complexity needed to be managed

 'Divide and Conquer' strategy

o Design systems in terms of modules which

 cooperate to perform system functions.

Architecture of Design

Key Question:

 What characteristics of the architecture should be

 used to relate to quality of product and process?

 Can we identify characteristics of an architecture

that we can use to give some measure of a quality

factor.

 Example:

o In a building, does the average distance to the

nearest stairs say anything about the quality of

safety?

o In a software architecture does the level of

 communication between modules say

anything

 about robustness?

 ARCHITECTURAL

CONSIDERATIONS

 Various researchers have suggested that the following

are important characterisitcs of an architecture

Mapping of Problem Domain into Implementation

 Changes are requested at the User level in terms of

domain entities. But change actually happens at the

code level.

 Example: In a library system

“ a book should now be marked as late if

the Time on Loan is greater than 3 days “

 Relationship or mapping between code and domain

should therefore be clear.

 So we require clear

 Mapping of domain to design modules of

architecture

 Mapping of design modules to code

 Example: Change to user interface required.

 Mapping of domain to design modules of architecture

o Change to input/output module of design

 architecture.

 Mapping of design modules to code

o Easily find input/output processing in code?

 |

 YES -if have input/output processing is

clearly

 written into a defined coding

unit e.g

 procedure or object

 NO -if input/output processing has

been spread

 over several coding units

destroying the

 modularity of the processing.

Coupling and Cohesion

 Coupling - what goes on between modules

 Cohesion - what goes on within modules, how

 focused is the module.

 These are obviously related

o Good coupling/cohesion means

 Few Interfaces/ Small Interfaces

 Every module minimises communication.

Information Hiding

 Access to information must be controlled.

 Modules must not be allowed to directly gain access to

 the internals of other modules.

 Access must be through an explicitely defined

 interface.

o Explicitely Interfaces.

Information Hiding Example

 Module A requires the input/output module to change

the size of window on the screen. This is controlled

by a variable SIZE in the input/output module.

 Module A must not be allowed direct access to

variable SIZE.

 If many modules did this, each one could change

the variable in its own way

 maybe to a size that is not possible.

 The input/output module has all the knowledge

about the screen

o so it should be the only modulecapable of directly

accessing SIZE.

 Other modules must REQUEST a change, by

accessing part of an INTERFACE that the

input/output module provides.

 |

 The SIZE information is HIDDEN and protected

behind explicit interface.

 MODULE A INPUT/OUTPUT

SIZE

Relationship between quality factors

 QUALITY

Robustness Correctness Extendibility

Reusability

coupling/cohesion information

hiding

 few small explicit

Mapping

 interfaces interfaces interfaces

 The above relationships are just a simple example

of the process to map high level quality featues to

measuarable quantities.

 Most Software Engineering books will describe

more complex relations – see Pressman.

